生物医学工程学杂志

生物医学工程学杂志

一种新型可回收腔静脉滤器血流动力学分析

查看全文

腔静脉滤器是为防止下肢及盆腔的血栓脱落上行导致肺栓塞而设计的一种过滤性装置。本研究设计了一款新型腔静脉滤器,为评价其在植入后的血流动力学性能和血栓捕捉效果,利用计算流体力学的方法与已上市的两种滤器德纳里(Denali)和护盾(Aegisy)进行血流动力学数值模拟比较,并实施体外实验测试对比血栓捕捉效果。本文的研究主要运用计算流体力学软件,分析血栓直径分别为 5、10、15 mm,血栓浓度含量分别为 10%、20%、30% 的情况下,流域段的出口流速、出入口压差、滤器壁面上的壁面剪应力、高低壁面剪应力区域面积占比以及滤器的血栓捕捉效果,同时还通过体外实验数据对比评价了以上 3 种滤器的血栓捕捉效果。研究结果显示,Denali 滤器植入后对血流的干扰最小,但对 5 mm 小直径血栓的捕捉效果最差;Aegisy 滤器对不同直径和浓度的血栓捕捉效果最优,但低壁面剪应力区域面积占比最大;本研究设计的新型滤器对小直径血栓有较好的捕捉效果,且该滤器中易导致血栓形成的低壁面剪应力区域面积占比最小;Denali 和 Aegisy 滤器的低壁面剪应力区域面积占比相对较大,形成血栓的风险较高。基于以上结果,期望本文设计的新型腔静脉滤器能为新型滤器的设计和临床选择提供参考依据。

Vena cava filter is a filter device designed to prevent pulmonary embolism caused by thrombus detached from lower limbs and pelvis. A new retrievable vena cava filter was designed in this study. To evaluate hemodynamic performance and thrombus capture efficiency after transplanting vena cava filter, numerical simulation of computational fluid dynamics was used to simulate hemodynamics and compare it with the commercialized Denali and Aegisy filters, and in vitro experimental test was performed to compare the thrombus capture effect. In this paper, the two-phase flow model of computational fluid dynamics software was used to analyze the outlet blood flow velocity, inlet-outlet pressure difference, wall shear stress on the wall of the filter, the area ratio of the high and low wall shear stress area and thrombus capture efficiency when the thrombus diameter was 5 mm, 10 mm, 15 mm and thrombus content was 10%, 20%, 30%, respectively. Meanwhile, the thrombus capture effects of the above three filters were also compared and evaluated by in vitro experimental data. The results showed that the Denali filter has minimal interference to blood flow after implantation, but has the worst capture effect on 5 mm small diameter thrombus; the Aegisy filter has the best effect on the trapping of thrombus with different diameters and concentrations, but the low wall shear stress area ratio is the largest; the new filter designed in this study has a good filtering and capture efficiency on small-diameter thrombus, and the area ratio of low wall shear stress which is prone to thrombosis is small. The low wall shear stress area of the Denali and Aegisy filters is relatively large, and the risk of thrombosis is high. Based on the above results, it is expected that the new vena cava filter designed in this paper can provide a reference for the design and clinical selection of new filters.

关键词: 肺栓塞; 腔静脉滤器; 血流动力学; 血栓捕捉效果; 壁面剪应力

Key words: pulmonary embolism; vena cava filters; hemodynamics; thrombus capture efficiency; wall shear stress

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 黄晨, 陈汉威. 下肢深静脉血栓的介入治疗研究进展. 中华介入放射学电子杂志, 2017, 5(2): 70-73.
2. 潘升权, 殷世武, 龙海灯. 下腔静脉滤器的应用现状与进展. 中国动脉硬化杂志, 2017, 25(8): 845-849.
3. Dria S J, Eggers M D. In vitro evaluation of clot capture efficiency of an absorbable vena cava filter. J Vasc Surg Venous Lymphat Disord, 2016, 4(4): 472-478.
4. Singer M A, Henshaw W D, Wang S L. Computational modeling of blood flow in the TrapEase inferior vena cava filter. Journal of Vascular and Interventional Radiology, 2009, 20(6): 799-805.
5. Wang S L, Singer M A. Toward an optimal position for IVC filters: computational modeling of the impact of renal vein inflow. Journal of Vascular and Interventional Radiology, 2009, 21(3): 367-374.
6. Aycock K I, Campbell R L, Manning K B, et al. A computational method for predicting inferior vena cava filter performance on a patient-specific basis. Journal of Biomechanical Engineering-Transactions of the ASME, 2014, 136(8): 081003.
7. 冯海全, 仇洪然, 刘佳, 等. 永久性腔静脉滤器的生物力学和血流动力学性能分析. 机械工程学报, 2017, 53(6): 187-194.
8. Wu W, Petrini L, Gastaldi D, et al. Finite element shape optimization for biodegradable Magnesium alloy stents. Ann Biomed Eng, 2010, 38(9): 2829-2840.
9. 吴云, 王妍, 余亚杰, 等. 血管中血栓流动及其影响的数值模拟. 天津医科大学学报, 2015, (2): 109-112, 120.
10. 国芳, 冯海全, 韩青松, 等. 3 种可转换型腔静脉滤器过滤血栓效果的对比分析. 医用生物力学, 2017, 32(3): 261-266.
11. 韩建超, 李中华, 王瑾晔. 镍钛合金材料在腔静脉滤器中的应用. 中国医疗设备, 2016, 31(4): 75-80.
12. Singer M A, Wang S L, Diachin D P. Design optimization of vena cava filters:an application to dual filtration devices. J Biomech Eng, 2010, 132(10): 101006.
13. 魏延宾, 程洁. 脉动流下血管支架耦合系统血流动力学实验研究. 生命科学仪器, 2017, 15(2): 29-33.
14. 严碧歌. 血栓形成过程与其密度的相关性研究. 西北大学学报:自然科学版, 2006, (3): 356-358.
15. 余亚杰, 王妍, 许松林. 血管中血液和血栓两相流动的 CFD 模拟. 高校化学工程学报, 2015, 29(4): 992-996.
16. 李婧, 彭坤, 崔新阳, 等. 位姿对支架虚拟释放结果影响的数值模拟研究. 生物医学工程学杂志, 2018, 35(02): 214-218.
17. 戴璇, 乔爱科. 计算流体力学在脑动脉瘤诊治中的应用. 医用生物力学, 2016, 31(5): 461-466.
18. Beier S, Ormiston J, Webster M, et al. Hemodynamics in idealized stented coronary arteries: important stent design considerations. Ann Biomed Eng, 2016, 44(2): 315-329.
19. 关海涛, 佟小强, 王健, 等. 新型可回收下腔静脉滤器的体外实验研究. 中国介入影像与治疗学, 2010, 7(2): 189-191.
20. Gao Xixiang, Zhang Jian, Chen Bing, et al. A new self-convertible inferior vena cava filter: experimental in-vitro and in-vivo evaluation. Journal of Vascular and Interventional Radiology, 2011, 22(6): 829-834.