生物医学工程学杂志

生物医学工程学杂志

磁感应热疗中磁介质参数与加热温度关系的模拟仿真

查看全文

本文以线性响应理论为基础,在有限元软件 COMSOL 中建立了基于大鼠肝癌的磁感应热疗(MFH)模型。通过对四氧化三铁(Fe3O4)、钴化铁(FeCo)、面心立方晶格铂化铁(fccFePt)和 L10 相铂化铁(L10FePt)共 4 种磁介质参数的分析,研究了弛豫机制下,磁介质半径的变化对损耗功率和温度场的影响。同时,基于所发现的规律,提出了针对不同磁介质参数的优化方法,并对 4 种磁介质的适用场合给出建议。本文通过尽可能地提高磁介质的损耗功率,可以降低治疗时所需的磁介质剂量,从而减小对肿瘤组织周围正常组织的不良影响。本文结果可为应用于磁感应热疗的磁介质制备提供参考。

In this paper, we established magnetic fluid hyperthermia (MFH) model about liver cancer of rat using the finite element software COMSOL based on the linear response theory. By analyzing four kinds of magnetic medium within relaxation mechanism, such as Fe3O4、FeCo、fccFePt and L10FePt, we studied the influence of the change of magnetic medium radius on dissipation power and temperature field, respectively. At the same time, based on the rules we have discovered, the optimization method for the parameters of several magnetic medium is proposed, and the applications of four kinds of magnetic medium are given as well. By increasing the dissipation power of the magnetic medium as much as possible, the dose of magnetic medium used in the treatment can be reduced, meanwhile, the adverse effects on health tissue surrounding the tumor will be minimized. The conclusion of this paper can provide reference for magnetic medium preparation applied to MFH.

关键词: 肿瘤; 磁感应热疗; 磁介质; 有限元分析

Key words: tumor; magnetic fluid hyperthermia; magnetic medium; finite element analysis

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 熊青青, 王建, 白杨. 纳米药物在肝癌治疗领域的研究进展. 生物医学工程学杂志, 2018, 35(2): 314-319.
2. 卓子寒, 翟伟明, 蔡东阳, 等. 肿瘤感应热疗计划系统与现代医疗信息系统集成应用研究. 生物医学工程学杂志, 2014, 31(1): 187-191.
3. 薛阳, 赵凌云, 唐劲天, 等. 金纳米复合材料在生物医学中的应用研究进展. 生物医学工程学杂志, 2014, 31(2): 462-466.
4. Kurgan E, Gas P. Analysis of electromagnetic heating in magnetic fluid deep hyperthermia//Proceedings of 201617th International Conference Computational Problems of Electrical Engineering (CPEE), 2016: 1-4.
5. 胡冠中. 磁流体热疗系统多物理场耦合分析与优化设计. 杭州: 浙江大学, 2016.
6. John A P, Member L S, Petryk A A. Mumerical model study of in vivo magnetic nanoparticle tumor heating. Trans Biom Eng, 2017, 64(12): 2813-2823.
7. 邱庆伟. 磁性纳米颗粒电磁致热效应在医学中的应用研究. 北京: 北京理工大学, 2015.
8. Lee J H, Jang J T, Choi J S, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol, 2011, 6(7): 418-422.
9. Rosensweig R E. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 2002, 252: 370-374.
10. Tang Y D, Jin T, Flesch R C. Numerical temperature analysis of magnetic hyperthermia considering nanoparticle clustering and blood vessels. IEEE Trans Magn, 2017, 53(10): 1-6.
11. 王军, 逯迈, 刘曦. 用于小动物磁感应热疗线圈的优化设计模拟. 航天医学与医学工程, 2018, 31(4): 380-387.
12. Pavel M, Gradinariu G, Stancu A. Study of the optimum dose of ferromagnetic nanoparticles suitable for cancer therapy using MFH. IEEE Trans Magn, 2008, 44(11): 3205-3208.
13. 陆森, 钱建民, 黄海清, 等. 几种不同预测大鼠肝脏体积(重量)方法的比较. 中华实验外科杂志, 2002, 19(3): 252-253.
14. Maenosono S, Saita S. Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans Magn, 2006, 42(6): 1638-1641.
15. Lv Yonggang, Deng Zhongshan S, Liu Jing. 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field. IEEE Trans Nanobiosci, 2005, 4(4): 284-294.
16. Pavel M, Stancu A. Ferromagnetic nanoparticles dose based on tumor size in magnetic fluid hyperthermia cancer therapy. IEEE Trans Magn, 2009, 45(11): 5251-5254.
17. Pavel M, Stancu A. Study of the optimum injection sites for a multiple metastases region in cancer therapy by using MFH. IEEE Trans Magn, 2009, 45(10): 4825-4828.
18. COMSOL Multiphysics, AC/DC Module, User's Guide: 187-192.
19. 李康. 磁流体肿瘤热疗的理论与实验研究. 北京: 北京交通大学, 2017.
20. Wu Lei, Cheng Jingjing, Liu Wenzhong, et al. Numerical analysis of electromagnetically induced heating and bioheat transfer for magnetic fluid hyperthermia. IEEE Trans Magn, 2015, 51(2): 1-4.
21. Lahonian M, Colneshan A A. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using boltzmann method. IEEE Trans Nanobiosci, 2011, 10(4): 262-268.