生物医学工程学杂志

生物医学工程学杂志

球面外骨骼并联机构的运动学及工作空间分析

查看全文

本文基于生物力学模型开源软件 OpenSim 生物力学仿真曲线,针对腿部运动功能受损的患者或患有行走功能障碍的老年人的康复治疗,提出了一种 2 自由度的球面髋关节外骨骼并联机构。首先,对并联机构进行建模,通过逆运动学分析得到机构的位置反解,对反解进行求导,推导出该机构的速度分析表达式。将模型分别导入机械系统动力学分析软件 ADAMS 与矩阵处理分析软件 MATLAB 中进行仿真实验,通过两者的速度仿真结果比较,验证了速度分析的正确性。然后,根据获取的雅可比(Jacobian)矩阵对该机构进行了 3 种奇异位型分析,根据机构反解在 MATLAB 中编程,给定机构参数与限制条件,获得该机构的可达工作空间。最后,构建原理样机实验平台。实验结果表明,外骨骼髋关节采用这种并联机构,能够满足人体髋关节的运动转动角度要求,也可以协助患者较好地进行腿部的前屈后伸运动和外展内收运动,有助于开展相应的康复训练,并且对人体髋关节外骨骼并联机构的研究也具有理论意义与应用价值。

Based on the biomechanical simulation curve of OpenSim, an open source software of biomechanical model, a spherical exoskeleton parallel mechanism with two degrees of freedom for hip joint is proposed in this paper for the rehabilitation therapy of patients with impaired leg motor function or elderly people with walking dysfunction. Firstly, the parallel mechanism is modeled and the position inverse solution of the parallel mechanism is obtained using inverse kinematics analysis. The velocity analysis expression of the mechanism is derived by deriving the inverse kinematics solution. The model is imported into the mechanical system dynamics analysis software ADAMS and matrix processing analysis software MATLAB to carry out simulation experiments. The correctness of the velocity analysis is verified by comparing the velocity simulation results of the two methods. Then, three singular types of the mechanism are analyzed according to the obtained Jacobian matrix. According to the inverse solution of the mechanism, the reachable workspace of the mechanism is obtained by programming in MATLAB with given mechanism parameters and restriction conditions. Finally, the prototype platform is built. The experimental results show that the exoskeleton hip joint using this parallel mechanism can satisfy the requirement of rotation angle of human hip joint movement, but also can be good to assist patients with leg flexion-extension movement and adduction-abduction movement, and it is helpful to carry out corresponding rehabilitation training. It also has theoretical significance and application value for the research work of human hip exoskeleton parallel mechanism.

关键词: 并联机构; 髋关节; 运动学; 奇异性; 工作空间

Key words: parallel mechanism; hip joint; kinematics; singularity; workspace

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Guzmán-Valdivia C H, Blanco-Ortega A, Oliver-Salazar M A, et al. HipBot-the design, development and control of a therapeutic robot for hip rehabilitation. Mechatronics, 2015, 30(6): 55-64.
2. 李剑锋, 吴希瑶, 邓楚慧, 等. 人-机运动相容型下肢康复训练外骨骼机构的构型设计与分析. 中国生物医学工程学报, 2012, 31(5): 720-728.
3. 李剑锋, 李世才, 陶春静, 等. 2-UPS/RR 并联髋关节助力机构及运动性能. 北京工业大学学报, 2017, 43(1): 49-57.
4. 李怀仙, 程文明, 张铭奎. 基于人机偏差模型的自对齐髋关节外骨骼解耦设计与计算. 机器人, 2017, 39(5): 627-637.
5. 杨巍, 张秀峰, 杨灿军, 等. 基于人机 5 杆模型的下肢外骨骼系统设计. 浙江大学学报: 工学版, 2014, 48(3): 430-435.
6. Yang W, Yang C J, Xu T. Human hip joint center analysis for biomechanical design of a hip joint exoskeleton. Front Inform Technol Electron Eng, 2016, 17(8): 792-802.
7. Lyu M, Chen Weihai, Ding Xilun, et al. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation. Review of Scientific Instruments, 2016, 87(10): 289-304.
8. 陈伟海, 徐颖俊, 王建华, 等. 并联式下肢康复外骨骼运动学及工作空间分析. 机械工程学报, 2015, 51(13): 158-166.
9. 谢峥, 王明江, 黄武龙, 等. 基于实时步态分析的行走辅助外骨骼机器人系统. 生物医学工程学杂志, 2017, 34(2): 265-270.
10. 史小华, 任岭雪, 廖梓宇, 等. 空间四自由度串并混联下肢康复机器人设计与分析. 机械工程学报, 2017, 53(13): 48-54.
11. 王效杰, 徐国成. 系统解剖学: 第 2 版. 北京: 高等教育出版社, 2015: 40-55.
12. 黄真, 赵永生, 赵铁石. 高等空间机构学: 第 2 版. 北京: 高等教育出版社, 2014: 29-85.
13. Bai S P, Hansen M R, Angeles J. A robust forward-displacement analysis of spherical parallel robots. Mechanism and Machine Theory, 2009, 44(12): 2204-2216.
14. Cheng Gang, Yu Jingli, Gu Wei. Kinematic analysis of 3SPS+1PS bionic parallel test platform for hip joint simulator based on unit quaternion. Robot Comput Integr Manuf, 2012, 28(2): 257-264.
15. 程世利, 吴洪涛, 姚裕, 等. 6-SPS 并联机构运动学正解的一种解析化方法. 机械工程学报, 2010, 46(9): 26-31.
16. Zhao Yaohong, Li Ruiqin, Bai Shaoping, et al. Singularity Analysis of 2R1P Spherical Parallel Mechanisms. Recent Advances in Mechanism Design for Robotics, London: Springer International Publishing, 2015: 427-434.
17. Zhang W, Zhang W, Shi D, et al. Design of hip joint assistant asymmetric parallel mechanism and optimization of singularity-free workspace. Mechanism and Machine Theory, 2018, 122(4): 389-403.
18. 刘亚丽, 季林红. 基于 Simulink 的上肢康复训练人机整体建模与分析. 生物医学工程学杂志, 2018, 35(1): 8-14.
19. Lee H, Kim W, Han J, et al. The technical trend of the exoskeleton robot system for human power assistance. International Journal of Precision Engineering and Manufacturing, 2012, 13(8): 1491-1497.
20. Aguirre-Ollinger G, Colgate J E, Peshkin M A, et al. Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. Int J Robot Res, 2011, 30(4): 486-499.