生物医学工程学杂志

生物医学工程学杂志

基于振动加速度的无束缚心冲击检测与心率提取方法研究

查看全文

针对睡眠过程中无束缚监测心动信息的需求和现有检测方法在精度和方便性方面存在的缺点,本研究设计制作了一套利用加速度传感器无束缚检测心冲击的系统,开发了相应算法。心冲击信号具有方向性,沿脊柱方向强度最大,受呼吸运动影响最小。本研究采用固定于床体的 3 轴加速度传感器检测心冲击激发的床体振动,从中分离提取脊柱方向信号,以实现睡眠过程中的无束缚心冲击检测。信号预处理中,首先利用频率特征分析找出心冲击信号的频率范围,然后在此范围内对原始信号进行分段滤波并将结果与理论波形比较,以确定信号的通频阈值,从而获得准确的心冲击波形。本研究基于能量波形进行 J 波检测,并提出了一种幅值与周期相结合的自适应阈值算法,以准确提取心率。通过与心电图的对比实验,验证了噪声背景下提取心冲击信号的准确性和鲁棒性。对 30 名受试者进行的实验结果显示,所开发的系统检测心率的准确度高达 99.21%,验证了利用加速度传感器无束缚检测心冲击的可行性。

The requirement for unconstrained monitoring of heartbeat during sleep is increasing, but the current detection devices can not meet the requirements of convenience and accuracy. This study designed an unconstrained ballistocardiogram (BCG) detection system using acceleration sensor and developed a heart rate extraction algorithm. BCG is a directional signal which is stronger and less affected by respiratory movements along spine direction than in other directions. In order to measure the BCG signal along spine direction during sleep, a 3-axis acceleration sensor was fixed on the bed to collect the vibration signals caused by heartbeat. An approximate frequency range was firstly assumed by frequency analysis to the BCG signals and segmental filtering was conducted to the original vibration signals within the frequency range. Secondly, to identify the true BCG waveform, the accurate frequency band was obtained by comparison with the theoretical waveform. The J waves were detected by BCG energy waveform and an adaptive threshold method was proposed to extract heart rates by using the information of both amplitude and period. The accuracy and robustness of the BCG detection system proposed and the algorithm developed in this study was confirmed by comparison with electrocardiogram (ECG). The test results of 30 subjects showed a high average accuracy of 99.21% to demonstrate the feasibility of the unconstrained BCG detection method based on vibration acceleration.

关键词: 心冲击; 无束缚检测; 加速度传感器; 心率

Key words: ballistocardiogram; unconstrained detection; acceleration sensor; heart rate

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Vehkaoja A, Kontunen A, Lekkala J. Effects of sensor type and sensor location on signal quality in bed mounted ballistocardiographic heart rate and respiration monitoring. Conf Proc IEEE Eng Med Biol Soc, 2015, 2015: 4383-4386.
2. Starr I, Wood F C. Twenty-year studies with the ballistocardiograph. Circulation, 1961, 23(5): 714-732.
3. 曹欣荣, 刘蕾, 蔡东阳, 等. 心冲击图特征统计及其医学诊断应用. 清华大学学报: 自然科学版, 2014, (5): 633-637.
4. 金晶晶. 心冲击图信号的无感觉检测与分析方法研究. 沈阳: 东北大学, 2009.
5. Alametsä J, Värri A, Viik J, et al. Ballistocardiogaphic studies with acceleration and electromechanical film sensors. Med Eng Phys, 2009, 31(9): 1154-1165.
6. Lydon K, Su B Y, Rosales L, et al. Robust heartbeat detection from in-home ballistocardiogram signals of older adults using a bed sensor. Conf Proc IEEE Eng Med Biol Soc, 2015, 2015: 7175-7179.
7. 王春武, 王旭, 龙哲, 等. 坐立两便式心冲击信号检测系统设计与实现. 东北大学学报: 自然科学版, 2012, 33(6): 786-789.
8. 杨丹, 徐彬, 叶琳琳, 等. 心脏心冲击信号降噪方法研究. 生物医学工程学杂志, 2014, 32(6): 1368-1372.
9. 廖媛. 基于 BCG 信号实时心率检测系统的设计与实现. 沈阳: 东北大学, 2011.
10. Smrcka P, Jirina M, Trefny Z, et al. New methods for precise detection of systolic complexes in the signal acquired from quantitative seismocardiograph//IEEE International Workshop on Intelligent Signal Processing, 2005. Faro, Portugal: IEEE, 2005: 375-380.
11. Paalasmaa J, Toivonen H, Partinen M. Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms. IEEE J Biomed Health Inform, 2015, 19(6): 1945-1952.
12. 蒋芳芳, 王旭, 杨丹. 基于心脏动力学的体震信号建模与仿真. 系统仿真学报, 2013, 25(3): 420-424.
13. Wang C, Wang X, Long Z, et al. The ballistocardiogram signal monitoring system based on the GSM network//Long M. World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China. IFMBE Proceedings. Berlin, Heidelberg: Springer, 2013: 114-119.
14. Su B Y, Ho K C, Skubic M, et al. Pulse rate estimation using hydraulic bed sensor. Conf Proc IEEE Eng Med Biol Soc, 2012, 2012: 2587-2590.
15. Junnila S, Akhbardeh A, Varri A. An electromechanical film sensor based wireless ballistocardiographic chair: implementation and performance. J Signal Process Syst, 2009, 57(3): 305-320.
16. Gilaberte S, Gómez-Clapers J, Casanella R, et al. Heart and respiratory rate detection on a bathroom scale based on the ballistocardiogram and the continuous wavelet transform. Conf Proc IEEE Eng Med Biol Soc, 2010, 2010: 2557-2560.
17. Acharya A, Das S, Pan I, et al. Extending the concept of analog Butterworth filter for fractional order systems. Signal Processing, 2014, 94: 409-420.
18. Daubechies I. The wavelet transform, time-frequency localisation and signal analysis. IEEE Trans Inform Theory, 1990, 36(5): 961-1005.
19. 张晶, 曹欣荣, 唐劲天, 等. 压电薄膜式心冲击图信号采集系统的设计与实现. 生命科学仪器, 2013, 11(5): 57-62.
20. 王春武, 王旭, 龙哲, 等. 基于心冲击信号的心率提取算法. 东北大学学报: 自然科学版, 2012, 33(8): 1103-1106.
21. Lee W K, Yoon H, Han C, et al. Physiological signal monitoring bed for infants based on load-cell sensors. Sensors, 2016, 16(3): 409.
22. Jiao Changzhe, Su B Y, Lyons P, et al. Multiple instance dictionary learning for beat-to-beat heart rate monitoring from ballistocardiograms. IEEE Trans Biomed Eng, 2018, 65(1): 2634-2648.