生物医学工程学杂志

生物医学工程学杂志

不同强度有氧运动下糖尿病患者血糖代谢模型仿真研究

查看全文

对于糖尿病患者而言,日常运动是改善其血糖水平的重要途径,但是运动模式(包括运动类型、运动强度、运动时机等)与血糖水平间的定量关系尚不清楚。为了深入研究不同强度下有氧运动与血糖变化间的定量关系,本文利用微分方程方法建立了有氧运动下糖尿病患者血糖代谢数学模型,结合数值仿真方法模拟研究了不同强度(低、中、高)的有氧运动对Ⅰ型和Ⅱ型糖尿病(T1DM,T2DM)患者血糖变化的影响以及胰岛素输注策略的优化,并在此基础上验证了本文所建立模型的普适性。研究结果表明:(1)高强度的有氧运动会导致低血糖事件(< 3.89 mmol/L)发生,因此应尽量避免;与中等强度相比,尽管低强度的有氧运动对血糖降低速率较慢,停留在高血糖(> 6.11 mmol/L)的时间相对较长,但是整体的血糖风险指标(BGRI)更低;(2)在中等强度有氧运动下,T1DM 和 T2DM 患者优化后的胰岛素输注策略与之前的方案相比分别减少了 50% 和 84% 的胰岛素用量;在低强度有氧运动下,尽管优化后的胰岛素输注策略在用量上与之前的方案基本持平,但是 BGRI 得到了降低;(3)模拟产生的 1 000 名糖尿病患者结果显示,本文所建立的模型及给出的胰岛素输注策略均具有较好的普适性。本文的研究结果有助于定量评估有氧运动对糖尿病患者血糖的影响,从而便于调节和管理运动模式下的血糖。

Exercise is vital for diabetics to improve their blood glucose level. However, the quantitative relationship between exercise modes (including types, intensity, time, etc.) and the blood glucose is still not clear. In order to answer these questions, this paper established a blood glucose metabolic model based on ordinary differential equation method. Furthermore, a silico method was adopted to study the effects of different aerobic exercise intensities (light, moderate and vigorous) on blood glucose and optimal strategies of insulin infusion for type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Additionally, the universality of proposed model and insulin infusion strategies was verified based on 1 000 virtual diabetes patients’ simulation. The experimental results showed that: (1) Vigorous-intensity aerobic exercise may result in hypoglycemia (< 3.89 mmol/L), which was so harmful to health that diabetics should avoid. Compared with moderate-intensity exercise, the light-intensity aerobic exercise intuitively lowered blood glucose slowly and caused a relative long high-blood-glucose (> 6.11 mmol/L) period, however, its overall blood glucose risk index (BGRI) was lower. (2) Insulin dosage of the optimized strategies decreased by 50% and 84% for T1DM and T2DM when they did moderate intensity exercise. As for light intensity exercise, the dosage of insulin was almost the same as they didn’t do exercise, but BGRI decreased significantly. (3) The simulations of 1 000 virtual diabetic patients manifested that the proposed model and the insulin infusion strategies had good universality. The results of this study can not only help to improve the quantitative understanding the effects of aerobic exercise on blood glucose of diabetic patients, but also can contribute to the regulation and management of blood glucose in exercise mode.

关键词: 糖尿病; 有氧运动; 血糖-胰岛素代谢模型

Key words: diabetes mellitus; aerobic exercise; glucose-insulin metabolic model

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Ambrose M. Diabetes: Examining insulin and blood sugar. New Jersey: Enslow Publishers, 2015.
2. 宁光. 中国糖尿病防治的现状及展望. 中国科学: 生命科学, 2018, 48(08): 810-811.
3. 王友清. 人工胰脏: 现状、挑战与展望. 中国生物医学工程学报, 2013, 32(3): 363-372.
4. Haidar A. The artificial pancreas: How closed-loop control is revolutionizing diabetes. IEEE Control Systems, 2016, 36(5): 28-47.
5. Cobelli C, Man C D, Sparacino G, et al. Diabetes: models, signals, and control. IEEE Rev Biomed Eng, 2009, 2(1): 54-96.
6. Rathee S. ODE models for the management of diabetes: A review. Int J Diabetes Dev Ctries, 2017, 37(1): 4-15.
7. Huang M, Li J, Song X, et al. Modeling impulsive injections of insulin: towards artificial pancreas. SIAM J Appl Math, 2012, 72(5): 1524-1548.
8. Riddell M C, Gallen I W, Smart C E, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes & Endocrinology, 2017, 5(5): 377-390.
9. Lukács A, Barkai L. Effect of aerobic and anaerobic exercises on glycemic control in type 1 diabetic youths. World J Diabetes, 2015, 6(3): 534-542.
10. Derouich M, Boutayeb A. The effect of physical exercise on the dynamics of glucose and insulin. J Biomech, 2002, 35(7): 911-917.
11. Breton M D. Physical activity-the major unaccounted impediment to closed loop control. J Diabetes Sci Technol, 2008, 2(1): 169-174.
12. Breton M D, Brown S A, Karvetski C H, et al. Adding heart rate signal to a control-to-range artificial pancreas system improves the protection against hypoglycemia during exercise in type 1 diabetes. Diabetes Technol Ther, 2014, 16(8): 506-511.
13. Zecchin C, Facchinetti A, Sparacino G, et al. Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Technol Ther, 2013, 15(10): 836-844.
14. 李鹏, 祝楠楠, 郁磊, 等. 人工胰脏中数据驱动个体血糖代谢模型的辨识. 仪器仪表学报, 2016, 37(3): 714-720.
15. 喻成侠. 面向人工胰脏的快速建模方法与血糖预测研究. 杭州: 浙江大学, 2016.
16. Turksoy K, Monforti C, Park M, et al. Use of wearable sensors and biometric variables in an artificial pancreas system. Sensors, 2017, 17(3): 532-548.
17. Kovatchev B P, Straume M, Cox D J, et al. Risk analysis of blood glucose data: a quantitative approach to optimizing the control of insulin dependent diabetes. J Theor Med, 2000, 3(1): 1-10.
18. Riddell M C, Zaharieva D P, Yavelberg L, et al. Exercise and the development of the artificial pancreas: one of the more difficult series of hurdles. J Diabetes Sci Technol, 2015, 9(6): 1217-1226.
19. Mackenzie R, Maxwell N, Castle P, et al. Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes. J Clin Endocrinol Metab, 2012, 97(4): E546-E555.