生物医学工程学杂志

生物医学工程学杂志

牙髓干细胞多向分化潜能的研究及应用进展

查看全文

牙髓干细胞(DPSCs)是一类成体干细胞,具有较强的增殖能力、自我更新能力、多向分化潜能,且来源丰富、获取方便、不涉及伦理问题,其作为种子细胞已在组织工程和再生医学领域发挥了重要作用,展现了巨大的潜能,有望成为组织修复和器官再生的理想种子细胞来源。DPSCs 在骨再生领域的研究已应用到临床,而向其他组织的分化研究尚处于不同水平的基础阶段,本文就其在成牙、成骨、成神经等方向分化潜能的相关研究及应用作一综述,为 DPSCs 在组织工程和再生医学领域的进一步研究提供线索和思路。

Dental pulp stem cells(DPSCs) are adult stem cells with strong proliferative ability, self-renewal ability and multidirectional differentiation potential. DPSCs have abundant source are easy to obtain, and do not have ethical problems. As seed cells, they played an important role and showed great potential in tissue engineering and regenerative medicine, making them potential ideal seed cells for repairation and regeneration of tissue and organ. Clinical application of DPSCs in bone regeneration has already been achieved, and studies on differentiation of DPSCs into other tissues are still at different levels of basic stage. In this paper, the research and application of directional differentiation potential such as tooth formation, osteogenesis, and nerve formation are reviewed in order to provide clues and ideas for further study on DPSCs in the field of tissue engineering and regenerative medicine.

关键词: 牙髓干细胞; 分化; 组织工程

Key words: dental pulp stem cells; differentiation; tissue engineering

引用本文: 葛芳, 杜立群. 牙髓干细胞多向分化潜能的研究及应用进展. 生物医学工程学杂志, 2019, 36(1): 172-176. doi: 10.7507/1001-5515.201804045 复制

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
2. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res, 2002, 81(8): 531-535.
3. Umemura N, Ohkoshi E, Tajima M, et al. Hyaluronan induces odontoblastic differentiation of dental pulp stem cells via CD44. Stem Cell Res Ther, 2016, 7(1): 135.
4. Li Shuchen, Lin Chujiao, Zhang Jie, et al. Quaking promotes the odontoblastic differentiation of human dental pulp stem cells. J Cell Physiol, 2018, 233(9): 7292-7304.
5. 王腾, 木合塔尔•霍加, 李军. 转化生长因子 β3 联合牙髓干细胞在种植体骨结合中作用的实验研究. 中华口腔医学杂志, 2017, 52(6): 367-373.
6. Di Benedetto A, Posa F, Carbone C A, et al. NURR1 downregulation favors osteoblastic differentiation of MSCs. Stem Cells Int, 2017, (4): 1-10.
7. Ghasemi H H, Rezvani Z, Nazm B M, et al. Chitosan-Intercalated montmorillonite/poly (vinyl alcohol) nanofibers as a platform to guide neuronlike differentiation of human dental pulp stem cells. ACS Appl Mater Interfaces, 2017, 9(13): 11392-11404.
8. Zhang Jinlong, Lu Xiaohui, Feng Guijuan, et al. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy. Cell Tissue Res, 2016, 366(1): 129-142.
9. Alkharobi H E, Al-Khafaji H, Beattie J, et al. Insulin-like growth factor axis expression in dental pulp cells derived from carious teeth. Front Bioeng Biotechnol, 2018, 6: 36.
10. Lee J H, Kang M S, Mahapatra C, et al. Effect of aminated mesoporous bioactive glass nanoparticles on the differentiation of dental pulp stem cells. PLoS One, 2016, 11(3): e0150727.
11. Kuang Rong, Zhang Zhanpeng, Jin Xiaobing, et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater, 2016, 33: 225-234.
12. Yang K C, Kitamura Y, Wu C C, et al. Tooth germ-like construct transplantation for whole-tooth regeneration: anin vivo study in the miniature pig. Artif Organs, 2016, 40(4): E39-E50.
13. Cataldi A, Rapino M, Di Valerio V, et al. " In vitro” osteogenic and angiogenic potential evaluation of a coculture of dental pulp stem and endothelial cells grown on the BisGMA/TEGDMA Chitlac coated thermosets. Ital J Anat Embryol, 2017, 22(1): 54.
14. 赵琳, 刘明月, 胡伟平. 内皮细胞及内皮素 1 在牙发生和骨形成中的作用研究. 口腔颌面修复学杂志, 2016, 17(1): 53-56.
15. Ling Linge, Feng Lin, Liu Hongchen, et al. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. J Biomed Mater Res A, 2015, 103(5): 1732-1745.
16. D'aquino R, de Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater, 2009, 18(7): 75-83.
17. 仵韩, 木合塔尔•霍加, 古扎丽努尔•阿巴拜克力. 转化生长因子-β3 对牙髓干细胞成骨向分化的作用. 临床口腔医学杂志, 2017, 33(10): 596-599.
18. Kabatas S, Demir C S, Civelek E, et al. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation. Bratislava Medical Journal-Bratislavske Lekarske Listy, 2018, 119(3): 143-151.
19. Zhang Jinlong, Lian Min, Cao Peipei, et al. Effects of nerve growth factor and basic fibroblast growth factor promote human dental pulp stem cells to neural differentiation. Neurochem Res, 2017, 42(4): 1015-1025.
20. Kaukua N, Shahidi M K, Konstantinidou C, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513(7519): 551-554.
21. Majumdar D, Kanafi M, Bhonde R, et al. Differential neuronal plasticity of dental pulp stem cells from exfoliated deciduous and permanent teeth towards dopamin. J Cell Physiol, 2016, 231(9): 2048-2063.
22. Victor A K, Reiter L T. Dental pulp stem cells for the study of neurogenetic disorders. Hum Mol Genet, 2017, 26(R2): R166-R171.
23. Gervois P, Struys T, Hilkens P, et al. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev, 2015, 24(3): 296-311.
24. Mead B, Logan A, Berry M, et al. Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells, 2017, 35(1): 61-67.
25. Sanen K, Martens W, Georgiou M, et al. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair?. J Tissue Eng Regen Med, 2017, 11(12): 3362-3372.
26. Mead B, Hill L J, Blanch R J, et al. Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy, 2016, 18(4): 487-496.
27. Fujii H, Matsubara K, Sakai K, et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res, 2015, 1613: 59-72.
28. Mita T, Furukawa-Hibi Y, Takeuchi H A, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease. Behav Brain Res, 2015, 293: 189-197.
29. Westin C B, Trinca R B, Zuliani C, et al. Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin. Mater Sci Eng C Mater Biol Appl, 2017, 80: 594-602.
30. Cho Y A, Noh K, Jue S S, et al. Melatonin promotes hepatic differentiation of human dental pulp stem cells: clinical implications for the prevention of liver fibrosis. J Pineal Res, 2015, 58(1): 127-135.
31. Tsai C L, Chuang P C, Kuo H K, et al. Differentiation of stem cells from human exfoliated deciduous teeth toward a phenotype of corneal epithelium in vitro. Cornea, 2015, 34(11): 1471-1477.
32. Ikbale E, Goorha S, Reiter L T, et al. Effects of hTERT immortalization on osteogenic and adipogenic differentiation of dental pulp stem cells. Data Brief, 2016, 6(C): 696-699.
33. Yam G H, Peh G S, Singhal S, et al. Dental stem cells: a future asset of ocular cell therapy. Expert Rev Mol Med, 2015, 17: e20.
34. Monteiro B G, Serafim R C, Melo G B, et al. Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif, 2009, 42(5): 587-594.
35. Pereira Gomes J A, Monteiro B G, Melo G B, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci, 2010, 51(3): 1408-1414.