生物医学工程学杂志

生物医学工程学杂志

基于计算机断层成像及逆向工程软件建立左心房憩室血流动力学有限元模型

查看全文

本文旨在探讨基于计算机断层成像(CT)图像,采用逆向工程软件建立左心房憩室(LAD)有限元模型的可行性。研究基于一例存在 LAD 的房颤患者的心脏三维 CT 图像,采用 Geomagic Studio 12 以及 Mimics 15 逆向工程软件精确再现了左心房及 LAD 的解剖特征。此外,本研究采用 ANSYS 有限元分析软件建立了左心房包含憩室与不包含憩室的两种有限元模型,并计算验证了模型的合理性。结果显示,基于心脏三维 CT 图像采用逆向工程软件建立 LAD 有限元模型是可行的。本文的结果将为进一步对 LAD 进行血流动力学分析奠定了理论基础。

This paper aims to explore the feasibility of building a finite element model of left atrial diverticulum (LAD) using reverse engineering software based on computed tomography (CT) images. The study was based on a three-dimensional cardiac CT images of a atrial fibrillation patient with LAD. The left atrium and LAD anatomical features were accurately reproduced by using Geomagic Studio 12 and Mimics 15 reverse engineering software. In addition, one left atrial model with LAD and one without LAD were created with ANSYS finite element analysis software, and the validity of the two models were verified. The results show that it is feasible to establish the LAD finite element model based on cardiac three-dimensional CT images using reverse engineering software. The results of this paper will lay a theoretical foundation for further hemodynamic analysis of LAD.

关键词: 左心房憩室; 有限元; 逆向工程; 血流动力学; 计算机断层扫描

Key words: left atrial diverticulum; finite element; reverse engineering; hemodynamics; computed tomography

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Shin S Y, Kwon S H, Oh J H. Anatomical analysis of incidental left atrial diverticula in patients with suspected coronary artery disease using 64-channel multidetector CT. Clin Radiol, 2011, 66(10): 961-965.
2. Abbara S, Mundo-Sagardia J A, Hoffmann U, et al. Cardiac CT assessment of left atrial accessory appendages and diverticula. AJR Am J Roentgenol, 2009, 193(3): 807-812.
3. 孟小茜, 赵亮, 顾玲玲, 等. 64 排螺旋 CT 血管造影评价左心房囊样结构. 实用放射学杂志, 2008, 24(11): 1483-1486.
4. 王国杰, 李颖勤, 秦培鑫, 等. 左心房憩室的影像学解剖及收缩性评价. 山东医药, 2016, 56(22): 52-54.
5. Peng Liqing, Yu Jianqun, Yang Zhigang, et al. Left atrial diverticula in patients referred for radiofrequency ablation of atrial fibrillation: assessment of prevalence and morphologic characteristics by dual-source computed tomography. Circ Arrhythm Electrophysiol, 2012, 5(2): 345-350.
6. Wongcharoen W, Tsao H M, Wu Meihan, et al. Morphologic characteristics of the left atrial appendage, roof, and septum: implications for the ablation of atrial fibrillation. J Cardiovasc Electrophysiol, 2006, 17(9): 951-956.
7. De Ponti R, Lumia D, Marazzi R, et al. Left atrial diverticula in patients undergoing atrial fibrillation ablation: morphologic analysis and clinical impact. J Cardiovasc Electrophysiol, 2013, 24(11): 1232-1239.
8. Nagai T, Fujii A, Nishimura K, et al. Large thrombus originating from left atrial diverticulum: a new concern for catheter ablation of atrial fibrillation. Circulation, 2011, 124(9): 1086-1088.
9. 章浩伟, 周思远, 刘颖, 等. 肝右静脉与下腔静脉的夹角变化对下腔静脉隔膜发生的影响. 生物医学工程学杂志, 2016, 33(2): 268-273.
10. Proietti M, Lip G Y. Geographical differences in thromboembolic and bleeding risks in patients with non-valvular atrial fibrillation: An ancillary analysis from the SPORTIF trials. Int J Cardiol, 2017, 236: 244-248.
11. 周洪煜, 公丕运, 杜学森, 等. 脾静脉血栓对血流动力学影响的分析及计算流体力学模拟. 生物医学工程学杂志, 2015, 32(1): 43-47.
12. Qiu Tianlun, Jin Guoliang, Xing Haiyan, et al. Association between hemodynamics, morphology, and rupture risk of intracranial aneurysms: a computational fluid modeling study. Neurol Sci, 2017, 38(6): 1009-1018.
13. Berg P, Vos S, Becker M, et al. Bringing hemodynamic simulations closer to the clinics: a CFD prototype study for intracranial aneurysms. Conf Proc IEEE Eng Med Biol Soc, 2016, 2016: 3302-3305.
14. Medero R, Garcia-Rodriguez S, Francois C J, et al. Patient-specific in vitro models for hemodynamic analysis of congenital heart disease–Additive manufacturing approach. J Biomech, 2017, 54: 111-116.
15. Javid Mahmoudzadeh Akherat S M, Cassel K, Boghosian M, et al. Are non-Newtonian effects important in hemodynamic simulations of patients with autogenous fistula? J Biomech Eng, 2017, 139(4): 1-9.
16. Qin Yi, Wu Jianhuang, Hu Qingmao, et al. Computational evaluation of smoothed particle hydrodynamics for implementing blood flow modelling through CT reconstructed arteries. J Xray Sci Technol, 2017, 25(2): 213-232.
17. Lu Jing, Yu Jie, Shi Heshui. Feasibility study of computational fluid dynamics simulation of coronary computed tomography angiography based on dual-source computed tomography. J Clin Med Res, 2017, 9(1): 40-45.
18. Al-Hakim R, Lee E W, Kee S T, et al. Hemodynamic analysis of edge stenosis in peripheral artery stent grafts. Diagn Interv Imaging, 2017, 98(10): 729-735.
19. PU Yuehua, LAN Linfang, LENG Xinyi, et al. Intracranial atherosclerosis: From anatomy to pathophysiology. Int J Stroke, 2017, 12(3, SI): 236-245.
20. Peng Liqing, Yang Zhigang, Shao Heng, et al. Dynamic assessment of normal aortic valve throughout the cardiac cycle with dual-source computed tomography. Int J Cardiol, 2011, 151(3): 358-360.
21. Peng Liqing, Yang Zhigang, Yu Jianqun, et al. Dynamic assessment of aortic annulus in patients with aortic stenosis throughout cardiac cycle with dual-source computed tomography. Int J Cardiol, 2012, 158(2): 304-307.
22. Genç B, Solak A, Kantarci M, et al. Anatomical features and clinical importance of left atrial diverticula: MDCT findings. Clin Anat, 2014, 27(5): 738-747.
23. Gould K L, Westcott R J. Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilatation. I. Physiologic basis and experimental validation. Am J Cardiol, 1978, 41(2): 267-287.
24. Wang Yajuan, Dur O, Patrick M J, et al. Aortic arch morphogenesis and flow modeling in the chick embryo. Ann Biomed Eng, 2009, 37(6): 1069-1081.
25. 白帆, 刘有军, 谢进生, 等. 血流动力学的医学应用与发展. 医用生物力学, 2013, 28(6): 677-683.
26. Peng Liqing, Qiu Yue, Huang Zhongyi, et al. Numerical simulation of hemodynamic changes in central veins after tunneled cuffed central venous catheter placement in patients under hemodialysis. Sci Rep, 2017, 7(1): 15955.
27. Doddasomayajula R, Chung B, Hamzei-Sichani F, et al. Differences in hemodynamics and rupture rate of aneurysms at the bifurcation of the basilar and internal carotid arteries. AJNR Am J Neuroradiol, 2017, 38(3): 570-576.
28. de Beaufort H W, Nauta F J, Conti M, et al. Extensibility and distensibility of the thoracic aorta in patients with aneurysm. Eur J Vasc Endovasc Surg, 2017, 53(2): 199-205.
29. Zwawi M A, Moslehy F A, Rose C A, et al. Developmental dysplasia of the hip: A computational biomechanical model of the path of least energy for closed reduction. J Orthop Res, 2016, 35(8): 1799-1805.
30. Quevedo Gonzalez F J, Reimeringer M, Nuno N. On the Two-dimensional simplification of three-dimensional cementless hip stem numerical models. J Biomech Eng, 2017, 139(3): 1-7.
31. Lin Y T, Wu J S, Chen J H. The study of wear behaviors on abducted hip joint prostheses by an alternate finite element approach. Comput Methods Programs Biomed, 2016, 131: 143-155.
32. Mao Wenbin, Li Kewei, Sun Wei. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc Eng Technol, 2016, 7(4): 374-388.
33. Kafi O, Khatib N E, Tiago J, et al. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Math Biosci Eng, 2017, 14(1): 179-193.
34. Doost S N, Zhong Liang, Su Boyang, et al. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle. Comput Methods Programs Biomed, 2016, 127: 232-247.
35. 乔爱科, 刘有军. 面向医学应用的血流动力学数值模拟 (Ⅰ): 动脉中的血流. 北京工业大学学报, 2008, 34(2): 189-196.