生物医学工程学杂志

生物医学工程学杂志

炭基复合材料生物相容性研究

查看全文

本文采用低压化学气相沉积(LPCVD)工艺在炭/炭复合材料(C/C)表面制备炭化硅(SiC)涂层以及二氧化硅(SiO2)涂层。通过 C/C、C/C-SiC、C/C-SiO2 这 3 种炭基复合材料的细胞毒性实验、细胞直接接触实验和细胞黏附实验,考察炭基复合材料的生物相容性。细胞毒性、细胞直接接触和细胞黏附实验结果均表明,3 种材料的细胞毒性均合格,生物相容性良好。但材料脱落的颗粒对噻唑蓝(MTT)法评价细胞毒性的准确性干扰很大,颗粒脱落越多,对小鼠成纤维细胞(L929 细胞)抑制生长的影响越明显。因此,如用 MTT 法进行细胞毒性评价,材料的浸提液需要过滤处理。材料表面颗粒脱落实验结果显示,72 h 内 3 种材料表面颗粒脱落量为 C/C-SiO2 > C/C > C/C-SiC,脱落曲线呈偏峰现象,在 8 h 达到峰值,至 36 h 趋于平稳;滤液分析显示,3 种材料与模拟体液(SBF)溶液之间无离子交换现象。本文对炭基复合材料生物相容性的研究结果或对其今后在临床领域的应用具有一定指导意义。

Silicon carbide (SiC) film and silicon dioxide (SiO2) film were deposited on the surface of carbon/carbon composite (C/C) by low pressure chemical vapor deposition (LPCVD). The biocompatibility of the three carbon-based composites, e. g. C/C, C/C-SiC, C/C-SiO2 were investigated by cytotoxicity test, cell direct contact and cell adhesion experiments. Cytotoxicity, cell direct contact and cell adhesion showed that the three materials had no toxic effect on mouse fibroblasts (L929 cells). However, the particles dropped off from the three materials had a great impact on evaluation accuracy of the thiazolyl blue (MTT) test. More the particles were lost, more growth inhibition to L929 cells. The evaluation accuracy of MTT method can be kept with the filtered extract of materials. Furthermore, the results of surface particles shedding experiment showed that the amount of surface particles shed from C/C-SiO2 was the most, followed by C/C and C/C-SiC in 72 hours. Particles shedding curves showed there was a peak reached at eighth hour and then declined to the thirty-sixth hour. The filtrate analysis showed that there was no ion exchange between the three materials and simulated body fluid (SBF) solution. The results of this study on biocompatibility of carbon-based composites have certain guiding significance for their future application in clinical filed.

关键词: 炭基复合材料; 生物相容性; 颗粒脱落

Key words: carbon-based composites; biocompatibility; particles shedding

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Nine M J, Choudhury D, Hee A C, et al. Wear debris characterization and corresponding biological response: artificial hip and knee joints. Materials (Basel), 2014, 7(2): 980-1016.
2. Steinberg E L, Rath E, Shlaifer A, et al. Carbon fiber reinforced PEEK optima-a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater, 2013, 17(1): 221-228.
3. Baker D, Kadambande S S, Alderman P M. Carbon fibre plates in the treatment of femoral periprosthetic fractures. Injury- International Journal of the Care of the Injured, 2004, 35(6): 596-598.
4. Coelho P G, Granjeiro J M, Romanos G E, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater, 2009, 88B(2, SI): 579-596.
5. 张磊磊, 李贺军, 李克智, 等. 炭/炭复合材料表面粗糙度对成骨细胞生长行为的影响. 无机材料学报, 2008, 23(2): 341-345.
6. Wan H, Williams R L, Doherty P J, et al. The cytotoxicity evaluation of Kevlar and silicon carbide by MTT assay. J Mater Sci Mater Med, 1994, 5(6/7): 441-445.
7. Lapp C A, Schuster G S. Effects of DMAEMA and 4-methoxyphenol on gingival fibroblast growth, metabolism, and response to interleukin-1. J Biomed Mater Res, 2002, 60(1): 30-35.
8. 方铁钧, 周群, 狄丽莎, 等. 碳纤维增强碳与碳化硅双基体陶瓷基复合材料作为口腔种植体材料的细胞毒性. 中国医科大学学报, 2011, 40(5): 417-421.
9. 熊信柏, 李贺军, 黄剑锋, 等. 生物医用碳/碳复合材料碳化硅涂层的研究. 西北工业大学学报, 2003, 21(3): 356-359.
10. 段海英, 高少怀. 3种材料纤维桩细胞毒性评价. 口腔医学研究, 2012, 28(6): 516-518.
11. 倪昕晔, 汤晓斌, 林涛, 等. 炭/炭复合材料的生物学安全性评价研究. 国际生物医学工程杂志, 2011, 34(6): 340-343.
12. 袁小兵, 陈岚, 孙宏伟, 等. 炭质股骨头生物相容性的动物实验. 中国组织工程研究, 2009, 13(38): 7503-7506.
13. van Zlverden M, Granum B. Adjuvant activity of particulate pollutants in different mouse models. Toxicology, 2000, 152(1/3): 69-77.
14. 邓红平, 宋伟民. 炭黑颗粒毒性作用的研究进展. 中华劳动卫生职业病杂志, 2009, 27(6): 372-374.
15. Shvedova A A, Kagan V E, Fadeel B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol, 2010, 50(1): 63-88.
16. 徐莺莺, 林晓影, 陈春英. 影响纳米材料毒性的关键因素. 科学通报, 2013, 58(24): 2466-2478.
17. Sharifi S, Behzadi S, Laurent S, et al. Toxicity of nanomaterials. Chem Soc Rev, 2012, 41(41): 2323-2343.
18. Xia Tian, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett, 2006, 6(8): 1794-1807.
19. Lao Fang, Li Wei, Han Dong, et al. Fullerene derivatives protect endothelial cells against NO-induced damage. Nanotechnology, 2009, 20(22): 225103.
20. Zhou Hejiang, Zhao Kai, Li Wei, et al. The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-kappa B-related signaling pathways. Biomaterials, 2012, 33(29): 6933-6942.
21. 于成, 赵卫生, 贾伟. 生物医用复合材料的研究进展. 玻璃钢/复合材料, 2012, (2): 78-81.
22. 中国国家标准委员会. GB/T16886.5-2003 医疗器械生物学评价第12部分:样品制备与参照样品. 北京: 中国标准出版社, 2005.
23. 中国国家标准委员会. GB/T16886.14-2003医疗器械生物学评价第14部分:陶瓷降解产物的定性与定量. 北京: 中国标准出版社, 2003.
24. 中国国家标准委员会. GB/T16886.17-2005医疗器械生物学评价第17部分:可沥滤物允许限量的建立. 北京: 中国标准出版社, 2005.
25. 中国国家标准委员会. GB/T16886.11-1997医疗器械生物学评价第11部分:全身毒性实验. 北京: 中国标准出版社, 1997.
26. 中国国家标准委员会. GB/T16886.5-2003医疗器械生物学评价第5部分:体外细胞毒性实验. 北京: 中国标准出版社, 2003.
27. 郑旭, 王莉芳, 陈芳, 等. MTT法评价4种医用材料的细胞毒性. 西北药学杂志, 2011, 26(5): 363-364.
28. Wang B L, Li L, Zheng Y F. In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys. Biomedical Materials, 2010, 5(4, SI): 044102.
29. International Organization for Standard. Implants for surgery-in vitro evaluation for apatite-forming ability of implant materials. ISO, 2007: 23317.
30. 毛菲菲, 陈书慧, 聂飞龙, 等. 成骨细胞和成纤维细胞黏附及增殖:不同宽度表面均一平行沟槽的影响. 中国组织工程研究, 2014, 18(51): 8243-8247.
31. 吴强, 于澍, 李云平, 等. C/C复合材料的非晶SiO2涂层制备及其生物活性. 复合材料学报, 2017, 34(7): 1582-1588.
32. Li Hejun, Zhang Leilei, Lu Jinhua, et al. Wear mechanism of biomedical carbon/carbon composites for artificial hip joints. Journal of Inorganic Materials, 2010, 25(9): 999-1002.
33. Howling G I, Ingham E, Sakoda H, et al. Carbon-carbon composite bearing materials in hip arthroplasty: analysis of wear and biological response to wear debris. J Mater Sci Mater Med, 2004, 15(1): 91-98.