生物医学工程学杂志

生物医学工程学杂志

关节软骨缺损修复区应力状态分析

查看全文

本文基于横观各向同性理论建立关节软骨固液耦合双相三维缺损及修复的有限元模型。本文通过研究邻近修复界面的宿主软骨的应力状态判别其变形类型,探讨致软骨修复界面开裂的原因。研究表明,表层缺损修复时,邻近修复界面的宿主软骨表面节点发生压缩变形;中间层、深层或全层缺损修复时,节点发生拉伸变形,此时软骨径向尺寸增加,修复界面易开裂。若采用全层缺损修复,组织工程化软骨(TEC)的弹性模量较低(0.1 MPa、0.3 MPa)时,邻近修复界面的宿主软骨表层和中间层主要发生拉伸变形;TEC 的弹性模量较高(0.6 MPa、0.9 MPa)时,宿主软骨各层均发生压缩变形。因此,全层缺损修复时,可适当增大 TEC 的弹性模量。本文为评估软骨组织工程修复效果提供了新的思路,或对临床有一定的指导意义。

Based on transversely isotropic theory, a finite element model for three-dimensional solid-liquid coupling defect repair of articular cartilage was established. By studying stress state of host cartilage near the restoration interface, we identified deformation type of cartilage and discussed the cause of restoration interface cracking. The results showed that the host cartilage surface node near the restoration interface underwent compression deformation in the condition of surface layer defect repair. When the middle layer, deep layer or full-thickness defect were repaired, the node underwent tensile deformation. At this point, the radial dimension of cartilage increased, which might cause restoration interface cracking. If elastic modulus of the tissue engineered cartilage (TEC) was lower (0.1 MPa, 0.3 MPa), the host cartilage surface layer and middle layer mainly underwent tensile deformation. While elastic modulus of TEC was higher (0.6 MPa, 0.9 MPa), each layer of host cartilage underwent compression deformation. Therefore, the elastic modulus of TEC could be increased properly for full-thickness defect repair. This article provides a new idea for evaluating the effect of cartilage tissue engineering repair, and has a certain guiding significance for clinical practice.

关键词: 横观各向同性; 缺损修复; 应力状态; 变形类型

Key words: transversely isotropic; defect repair; stress state; deformation type

引用本文: 刘海英, 赵永政, 赵森, 冯晶晶, 张春秋. 关节软骨缺损修复区应力状态分析. 生物医学工程学杂志, 2018, 35(5): 705-712, 719. doi: 10.7507/1001-5515.201712083 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Sartori-Cintra A R, Aikawa P, Cintra D E. Obesity versus osteoarthritis: beyond the mechanical overload. Einstein, 2014, 12(3): 374-379.
2. Vannini F, Spalding T, Andriolo L, et al. Sport and early osteoarthritis: the role of sport in aetiology, progression and treatment of knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc, 2016, 24(6): 1786-1796.
3. Brody L T. Knee osteoarthritis: Clinical connections to articular cartilage structure and function. Phys Ther Sport, 2015, 16(4): 301-316.
4. 潘育松, 丁国新, 王静. 组织工程软骨修复关节软骨损伤和缺损. 生物医学工程学杂志, 2013, 30(2): 432-437.
5. Akman Y E, Sukur E, Senel A, et al. The comparison of the effects of a novel hydrogel compound and traditional hyaluronate following micro-fracture procedure in a rat full-thickness chondral defect model. Acta Orthop Traumatol Turc, 2017, 51(4): 331-336.
6. Braman J P, Bruckner J D, Clark J M, et al. Articular cartilage adjacent to experimental defects is subject to atypical strains. Clin Orthop Relat Res, 2005, 430: 202-207.
7. Strauss E J, Goodrich L R, Chen C T, et al. Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model. American Journal of Sports Medicine, 2005, 33(11): 1647-1653.
8. 孟迪, 张春秋, 刘海英, 等. 软骨缺损形状对组织工程修复区的力学影响. 生物医学工程与临床, 2016, 20(1): 9-14.
9. Clark J M. The organisation of collagen fibrils in the superficial zones of articular cartilage. Journal of Anatomy,, 1990, 171: 117-130.
10. Donzelli P S, Spilker R L. A finite element investigation of solid phase transverse isotropy in contacting biphasic cartilage layers. Advances in Bioengineering, 1996, 33:349-350.
11. Elhamian S M, Alizadeh M, Shokrieh M M, et al. A depth dependent transversely isotropic micromechanic model of articular cartilage. Journal of Materials Science Materials in Medicine, 2015, 26(2): 111-121.
12. 邵越峰, 卫小春. 应力状态下软骨基质分解代谢的变化. 中国骨伤, 2009, 22(3): 241-244.
13. 何祝斌, 苑世剑, 王仲仁. 应力分量变化范围的描述方程及其图形. 力学季刊, 2006, 27(3): 528-534.
14. 王仲仁, 何祝斌. 一点的正应力三维图形. 塑性工程学报, 2003, 10(1): 4-8.
15. 王仲仁, 戴昆. 一点的三维剪应力图及其与金属变形类型的对应关系. 金属学报, 2000, 36(1): 46-50.
16. 何祝斌, 王仲仁, 苑世剑. 作用于一点的正应力和剪应力三维图形及其在金属成形分析中的应用. 金属学报, 2004, 40(3): 319-325.
17. 徐敬, 赵建宁, 徐海栋, 等. 关节软骨损伤修复研究进展. 临床与病理杂志, 2015, 35(3): 455-461.
18. Warner M D, Taylor W R, Clift S E. Cyclic loading moves the peak stress to the cartilage surface in a biphasic model with isotropic solid phase properties. Med Eng Phys, 2004, 26(3): 247-249.
19. 张学亮, 刘舒云, 郭维民, 等. 骨软骨一体化仿生支架的研究现状与展望. 中国医药生物技术, 2017, 12(4): 350-355.
20. Li L P, Buschmann M D, Shirazi-Adl A. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. Journal of Biomechanics, 2000, 33(12): 1533-1541.
21. Jazrawi L M, Alaia M J, Chang G, et al. Advances in magnetic resonance imaging of articular cartilage. Journal of the American Academy of Orthopaedic Surgeons, 2011, 19(7): 420-429.
22. 翟文杰, 翟中勇. 软骨组织无约束压缩的有限元分析. 医用生物力学, 2012, 27(6): 630-635.
23. 卫小春. 关节软骨. 北京: 科学出版社, 2007: 1-302.