生物医学工程学杂志

生物医学工程学杂志

超声介导微泡对细胞的声致成孔作用中次Bjerknes力的影响

查看全文

声致成孔通过超声介导微泡的空化作用使得细胞膜产生暂态孔隙,可以提高药物和基因的过膜转运效率。目前常见声致成孔中单个微泡在超声场中的动力学和单个微泡对细胞作用力学的研究,但是未见存在两个微泡相邻时对细胞产生声孔的可能性的研究分析。本文分析超声场中两个微泡相邻情况下的一种声致成孔的情况,即建立微泡受到邻近另一微泡的次 Bjerknes 力作用时的动力学模型,及其对细胞的力学作用。本文根据实际可能的参数设置,通过数值模拟研究了:(1)超声和微泡等参数对次 Bjerknes 力值的影响;(2)在相邻稳态振动微泡给予的次 Bjerknes 力作用下,微泡对细胞膜的作用力;(3)当微泡给予细胞作用力超过细胞膜耐受剪切力阈值时可产生声致成孔的可能性。通过模拟分析,本文给出了两个相邻微泡稳态振动时,可能产生声孔的超声照射和微泡参数,并首次发现相对于超声照射参数来说,微泡参数对次 Bjerknes 力的影响较大。

In sonoporation, the cell membrane is broken-up temporarily by ultrasound mediated microbubbles, which is promoting drug or gene into the cell. In current literatures, there are numerous studies of single microbubble dynamics in sonoporation. However till now, little studies have been focused on the sonoporation incidence caused by more than one microbubble. In this article, the dynamic model of two adjacent microbubbles in stable cavitation has been introduced. By the model, the forces including secondary Bjerknes force on cell membrane given by microbubbles and their effects on sonoporation have been numerically studied. According to the experimental parameters, we numerically studied (1) effects of the ultrasound and microbubble parameters on the secondary Bjerknes forces; (2) the forces exerted on cell membrane by microbubble, including the secondary Bjerknes force; (3) the sonoporation possibility caused by those forces produced by microbubble. In this article, the ultrasound and microbubbles’ parameters range were found to produce sonoporation by two adjacent microbubbles. Furthermore, it is the first time to found that the microbubbles’ parameters are more important than ultrasound parameters on sonoporation.

关键词: 超声介导微泡; 细胞; 次Bjerknes力; 声致成孔

Key words: ultrasound-mediated microbubble; cell; secondary Bjerknes force; sonoporation

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Wu Junru, Pepe J, Rincón M. Sonoporation, anti-cancer drug and antibody delivery using ultrasound. Ultrasonics, 2006, 44(Suppl 1): e21-e25.
2. Tsai K C, Fang S Y, Yang S J, et al. Time dependency of ultrasound-facilitated gene transfection. J Gene Med, 2009, 11(8): 729-736.
3. Sirsi S R, Borden M A. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics, 2012, 2(12): 1208-1222.
4. Escoffre J M, Zeghimi A, Novell A, et al. In-vivo gene delivery by sonoporation: recent progress and prospects. Curr Gene Ther, 2013, 13(1): 2-14.
5. Zhou Yufeng. Ultrasound-mediated drug/gene delivery in solid tumor treatment. J Healthc Eng, 2013, 4(2): 223-254.
6. Lentacker I, De Cock I, Deckers R, et al. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv Drug Deliv Rev, 2014, 72: 49-64.
7. 陈谦, 邹欣晔, 程建春. 超声波声孔效应中气泡动力学的研究. 物理学报, 2006, 55(12): 6476-6481.
8. Yu Hao, Xu Liang, Chen Siping. A transfer efficiency model for ultrasound mediated drug/gene transferring into cells. Ultrason Sonochem, 2014, 21(1): 113-120.
9. Lu Yuan, Katz J, Prosperetti A. Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam. Phys Fluid, 2013, 25(7): 073301.
10. Alibakhshi M A, Holt R G. Suppressing shape instabilities to discover the Bjerknes force instability (L). J Acoust Soc Am, 2011, 130(5): 3321-3324.
11. Mettin R, Akhatov I, Parlitz U, et al. Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E, 1997, 56(3): 2924-2931.
12. Doinikov A A. Translational motion of a spherical bubble in an acoustic standing wave of high intensity. Phys Fluids, 2002, 14(4): 1420-1425.
13. Marmottant P, van der Meer S, Emmer M, et al. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am, 2005, 118(6): 3499-3505.
14. Morgan K E, Allen J S, Dayton P A, et al. Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size. IEEE Trans Ultrason Ferroelectr Freq Control, 2000, 47(6): 1494-1509.
15. 龙东平, 谭建平. 红细胞表面摩擦特性的AFM研究. 润滑与密封, 2009, 34(12): 10-14.
16. 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301.
17. Yu Hao, Lin Zhongshi, Xu Liang, et al. Theoretical study of microbubble dynamics in sonoporation. Ultrasonics, 2015, 61: 136-144.