生物医学工程学杂志

生物医学工程学杂志

基于小波变换结合经验模态分解提取孤独症儿童脑电异常特征研究

查看全文

孤独症的早期发现与及时干预至关重要。本文结合小波变换和经验模态分解(EMD)提取脑电信号(EEG)特征,比较分析孤独症儿童和正常儿童脑电信号的特征差异。试验共采集了 25 例(20 例男孩,5 例女孩)5~10 岁孤独症儿童和 25 例 5~10 岁正常儿童的脑电信号,基于小波变换提取 C3、C4、F3、F4、F7、F8、FP1、FP2、O1、O2、P3、P4、T3、T4、T5 和 T6 的 alpha、beta、theta 和 delta 频段的节律波,再进行 EMD 分解得到固有模态函数(IMF)特征,以支持向量机(SVM)实现孤独症和正常儿童脑电的分类评估。试验结果表明,小波变换和 EMD 结合的方法可以有效地识别孤独症儿童和正常儿童的脑电信号特征,分类正确率达到 87%,相比文中小波结合样本熵方法提取脑电特征分类评估的准确率高出将近 20%。所提取的四种节律波中,delta 节律(1~4 Hz)波的分类正确率最高,特别是在前额 F7 通道、左前额 FP1 通道和颞区 T6 通道其分类准确率均超过 90%,能够较好地表达孤独症儿童脑电信号的特点。

Early detection and timely intervention are very essential for autism. This paper used the wavelet transform and empirical mode decomposition (EMD) to extract the features of electroencephalogram (EEG), to compare the feature differences of EEG between the autistic children and healthy children. The experimental subjects included 25 healthy children (aged 5–10 years old) and 25 children with autism (20 boys and 5 girls aged 5–10 years old) respectively. The alpha, beta, theta and delta rhythm wave spectra of the C3, C4, F3, F4, F7, F8, FP1, FP2, O1, O2, P3, P4, T3, T4, T5 and T6 channels were extracted and decomposed by EMD decomposition to obtain the intrinsic modal functions. Finally the support vector machine (SVM) classifier was used to implement assessment of autism and normal classification. The results showed that the accuracy could reach 87% and which was nearly 20% higher than that of the model combining the wavelet transform and sample entropy in the paper. Moreover, the accuracy of delta (1–4 Hz) rhythm wave was the highest among the four kinds of rhythms. And the classification accuracy of the forehead F7 channel, left FP1 channel and T6 channel in the temporal region were all up to 90%, which expressed the characteristics of EEG signals in autistic children better.

关键词: 孤独症; 脑电信号; 小波变换; 经验模态分解

Key words: autism; electroencephalogram; wavelet transform; empirical mode decomposition

引用本文: 李昕, 蔡二娟, 秦鹭云, 康健楠. 基于小波变换结合经验模态分解提取孤独症儿童脑电异常特征研究. 生物医学工程学杂志, 2018, 35(4): 524-529. doi: 10.7507/1001-5515.201705067 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Andersson G, Ghaden A. Overview and analysis of the behaviourist criticism of the Diagnostic and Statistical of Mental Disorders (DSM). Clinical Psychologist, 2006, 10(2): 67-77.
2. Catarino A, Churches O, Baron-Cohen S, et al. Atypical EEG complexity in autism spectrum conditions: a multiscale entropy analysis. Clin Neurophysiol, 2011, 122(12): 2375-2383.
3. Pablo B, Bruno W, Sebastian C, et al. A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long range connections and an excess of short-range connections. Neuropsychologia, 2013, 49(2011): 254-263.
4. Coben R, Clarke A R, Hudspeth W, et al. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol, 2008, 119(5): 1002-1009.
5. Dawson G, Klinger L G, Panagiotides H. Subgroups of autistic children based on social behavior display distinct patterns of brain activity. Journal of Abnormal Child Psychology, 1995, 23(5): 569-583.
6. 李静青, 李小俚. 自闭症儿童的脑电分析与干预研究. 秦皇岛: 燕山大学, 2015.
7. Keh L, Chupungco A, Esguerra J. Nonlinear time series analysis of electroencephalogram tracings of children with autism. Int J Bifurcation Chaos, 2012, 22(3): 1250044.
8. 杨航, 郭晓金. 基于 EMD 的运动想象脑电特征提取与识别. 软件导刊, 2015, 14(1): 44-47.
9. Huang N E, Shen Z, Long S L, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of The Royal Society A, 1998, 454(1971): 903-995.
10. 陈一贤. HHT方法分析. 杭州: 浙江大学, 2007.
11. Al-Subari K, Al-Baddai S, Tomé A M, et al. Combined EMD-sLORETA analysis of EEG data collected during a contour integration task. PLoS ONE, 2016, 11(12): e0167957.
12. 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述. 电子科技大学学报, 2011, 40(1): 1-10.
13. Tierney A L, Gabard-Durnam L, Vogel-Farley V, et al. Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PLoS One, 2012, 7(6): e39127.
14. 刘建成, 蔡湛宇. 脑电信号(EEG)分析方法的现状与发展. 中国医学物理学杂志, 1998, 15(4): 252-255.
15. 李颖洁, 樊飞燕, 陈兴时. 脑电分析在认知研究中的进展. 北京生物医学工程, 2006, 25(3): 321-324.
16. Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science, 2004, (1): 1926-1929.
17. Stroganova T A, Nygren G, Tsetlin M M, et al. Abnormal EEG lateralization in boys with autism. Clin Neurophysiol, 2007, 118: 1842-1854.
18. Pop-Jordanova N, Zorcec T, Demerdzieva A, et al. QEEG characteristics and spectrum weighted frequency for children diagnosed as autistic spectrum disorder. Nonlinear Biomed Phys, 2010, 4: 4-10.
19. Chan A S, Sze S L, Cheung M C. Quantitative electro encephalographic profiles for children with autistic spectrum disorder. Neuropsychology, 2007, 21(1): 74-81.