生物医学工程学杂志

生物医学工程学杂志

基于自相关函数的体表标测房颤信号的节律分析

查看全文

目前房颤(AF)相关研究已经成为临床关注的热点,而体表电位标测(BSPM)技术作为一种无创的心电标测技术已广泛应用于房颤的研究中。本文采用 10 位房颤患者消融手术前后的体表电位标测数据(每位患者的数据为 128 个通道),以自相关函数的方法得到所有患者体表电位标测信号的激动间期,并将该结果与人工计数法得到的激动间期结果进行比较,验证了自相关函数方法的准确性。同时,本文还将自相关函数方法与常用的快速傅里叶变换(FFT)方法进行了比较,发现自相关函数方法的准确度更高。为了寻找预测房颤复发的较为简单的规律,本文还利用自相关函数方法分析了这 10 位房颤患者术前的体表心电节律。结果表明,若患者体表的前胸左侧区域的主导频率(DF)大于 2.5 Hz 的电极通道占比均大于其它三个区域(前胸右侧、后背左侧、后背右侧),则该患者术后有较大可能性发生房颤复发。本文结果验证了自相关函数方法用于心电节律分析的合理性,并总结出基于该方法预测房颤复发的简单规律。

The study of atrial fibrillation (AF) has been known as a hot topic of clinical concern. Body surface potential mapping (BSPM), a noninvasive electrical mapping technology, has been widely used in the study of AF. This study adopted 10 AF patients’ preoperative and postoperative BSPM data (each patient’s data contained 128 channels), and applied the autocorrelation function method to obtain the activation interval of the BSPM signals. The activation interval results were compared with that of manual counting method and the applicability of the autocorrelation function method was verified. Furthermore, we compared the autocorrelation function method with the commonly used fast Fourier transform (FFT) method. It was found that the autocorrelation function method was more accurate. Finally, to find a simple rule to predict the recurrence of atrial fibrillation, the autocorrelation function method was used to analyze the preoperative BSPM signals of 10 patients with persistent AF. Consequently, we found that if the patient’s proportion of channels with dominant frequency larger than 2.5 Hz in the anterior left region is greater than the other three regions (the anterior right region, the posterior left region, and the posterior right region), he or she might have a higher possibility of AF recurrence. This study verified the rationality of the autocorrelation function method for rhythm analysis and concluded a simple rule of AF recurrence prediction based on this method.

关键词: 房颤; 体表电位标测; 自相关函数; 快速傅里叶变换; 节律分析

Key words: atrial fibrillation; body surface potential mapping; autocorrelation function; fast Fourier transform; rhythm analysis

引用本文: 张轻舟, 杨翠微, 白宝丹. 基于自相关函数的体表标测房颤信号的节律分析. 生物医学工程学杂志, 2018, 35(2): 161-170. doi: 10.7507/1001-5515.201706096 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Rieta J J, Castells F, Sánchez C, et al. Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Trans Biomed Eng, 2004, 51(7): 1176-1186.
2. Kalsi M, Prakash N R. A new algorithm for detection of atrial fibrillation//2016 International conference on electrical, electronics, and optimization techniques (ICEEOT), 2016: 3177-3182.
3. Ortigosa N, Cano O, Galbis A, et al. Time-Frequency analysis for early classification of persistent and Long-Standing persistent atrial fibrillation//2016 Computing In Cardiology Conference (CINC), 2016, 43: 673-676.
4. Liu C, Eggen M D, Swingen C M, et al. Noninvasive mapping of transmural potentials during activation in swine hearts from body surface electrocardiograms. IEEE Trans Med Imaging, 2012, 31(9): 1777-1785.
5. Zhou Zhaoye, Jin Qi, Chen Linyee, et al. Noninvasive imaging of High-Frequency drivers and Reconstruction of global dominant frequency Maps in patients with paroxysmal and persistent atrial fibrillation. IEEE Trans Biomed Eng, 2016, 63(6): 1333-1340.
6. Han Chengzong, Liu Zhongming, Zhang Xin, et al. Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: a computational and experimental study on a rabbit model. IEEE Trans Med Imaging, 2008, 27(11): 1622-1630.
7. Guillem M S, Climent A M, Castells F, et al. Noninvasive mapping of human atrial fibrillation. J Cardiovasc Electrophysiol, 2009, 20(5): 507-513.
8. Li G, He B. Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach. IEEE Trans Biomed Eng, 2001, 48(6): 660-669.
9. He Bin, Li Guanglin, Zhang Xin. Noninvasive three-dimensional activation time imaging of ventricular excitation by means of a heart-excitation model. Phys Med Biol, 2002, 47(22): 4063-4078.
10. He Bin, Li Guanglin, Zhang Xin. Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans Biomed Eng, 2003, 50(10): 1190-1202.
11. Giffard-Roisin S, Jackson T, Fovargue L, et al. Noninvasive personalization of a cardiac electrophysiology model from body surface potential mapping. IEEE Trans Biomed Eng, 2017, 64(9): 2206-2218.
12. Michal K, Herve R, Malgorzata F, et al. The effect of precordial lead displacement on p-wave morphology in body surface potential mapping. Comput Cardiol, 2013, 40: 531-534.
13. 王德玺, 杨翠微. 房颤病人体表标测信号的 f 波提取方法研究. 仪器仪表学报, 2016, 37(10): 2359-2365
14. Botteron G W, Smith J M. A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans Biomed Eng, 1995, 42(6): 579-586.
15. Li Wenhai, Yang Cuiwei, Wang Yanlei, et al. Several insights into the preprocessing of electrograms in atrial fibrillation for dominant frequency analysis. Biomed Eng Online, 2016, 15(1): 38.
16. Ghanavati G, Hines P D, Lakoba T I. Understanding early indicators of critical transitions in power systems from autocorrelation functions. IEEE Transactions on Circuits and Systems I-Regular Papers, 2014, 61(9): 2747-2760.
17. 周拓. 基于心外膜标测技术的房颤电信号处理方法研究. 上海: 复旦大学, 2010.
18. Ng J, Kadish A H, Goldberger J J. Technical considerations for dominant frequency analysis. J Cardiovasc Electrophysiol, 2007, 18(7): 757-764.
19. Lemay M, Prudat Y, Jacquemet V, et al. Phase-rectified signal averaging used to estimate the dominant frequencies in ECG signals during atrial fibrillation. IEEE Trans Biomed Eng, 2008, 55(11): 2538-2547.