生物医学工程学杂志

生物医学工程学杂志

利用可穿戴设备对帕金森病患者运动功能进行量化评估

查看全文

帕金森病(PD)患者的运动功能障碍是其主要的临床症状和诊断依据。本文共招募 30 名受试者,其中包括 15 例 PD 患者(PD 组)和 15 例健康受试者(对照组),然后将 5 个惯性传感器节点分别佩戴在受试者的四肢和腰部,通过提取和分析受试者在 6 个范式动作下的加速度、角速度信号,得到 20 个评估不同身体部位运动功能的定量指标,包含动作的幅度、频率以及疲劳程度等信息。通过对两组受试者的数据进行对比分析,使用误差反向传播(BP)神经网络进行自动判别并预测患者临床量表评分。最终统计结果表明,两组受试者的多数指标的差异均有统计学意义;10 次 5 折交叉验证表明,BP 神经网络对两个受试组的分类准确率达 90%,对 PD 组的亨-雅(H-Y)分期和统一帕金森氏病评分量表运动功能(UPDRS Ⅲ)评分的预测准确率分别为 72.80% 和 68.64%。该研究表明了利用可穿戴设备来对 PD 患者运动症状进行定量评估的可行性,文中所获得的定量指标对于今后的相关研究也具有一定的参考价值。

Motor dysfunction is the main clinical symptom and diagnosis basis of patients with Parkinson’s disease (PD). A total of 30 subjects were recruited in this study, including 15 PD patients (PD group) and 15 healthy subjects (control group). Then 5 wearable inertial sensor nodes were worn on the bilateral upper limbs, lower limbs and waist of subjects. When completing the 6 paradigm tasks, the acceleration and angular velocity signals from different parts of the body were acquired and analyzed to obtain 20 quantitative parameters which contain information about the amplitude, frequency, and fatigue degree of movements to assess the motor function. The clinical data of the two groups were statistically analyzed and compared, and then Back Propagation (BP) Neural Network was used to classify the two groups and predict the clinical score. The final results showed that most of the parameters had significant difference between the two groups, ten times of 5-fold cross validation showed that the classification accuracy of the BP Neural Network for the two groups was 90%, and the predictive accuracy of Hoehn-Yahr (H-Y) staging and unified PD rating scale (UPDRS) Ⅲ score of the patients were 72.80% and 68.64%, respectively. This study shows the feasibility of quantitative assessment of motor function in PD patients using wearable sensors, and the quantitative parameters obtained in this paper may have reference value for future related research.

关键词: 帕金森病; 运动功能; 可穿戴设备; 定量评定

Key words: Parkinson’s disease; motor function; wearable sensors; quantitative assessment

引用本文: 沈天毓, 王计平, 郭立泉, 白启帆, 张惠钧, 王守岩, 熊大曦. 利用可穿戴设备对帕金森病患者运动功能进行量化评估. 生物医学工程学杂志, 2018, 35(2): 206-213. doi: 10.7507/1001-5515.201704037 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry, 2008, 79(4): 368-376.
2. 中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会神经内科医师分会帕金森病及运动障碍专业. 中国帕金森病的诊断标准 (2016 版) 中华神经科杂志, 2016, 49(4): 268-271
3. Zhang Zhenxin, Roman G C, Hong Zhen, et al. Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet, 2005, 365(9459): 595-597.
4. Lang A E, Eberly S, Goetz C G, et al. Movement disorder society unified Parkinson disease rating scale experiences in daily living: longitudinal changes and correlation with other assessments. Mov Disord, 2013, 28(14): 1980-1986.
5. 刘春风, 毛成洁. 探索新的评价方法,全面客观评价帕金森病患者的运动和非运动症状. 中华医学杂志, 2014, 94(11): 801-803
6. 孙志强, 王广志, 陈滨, 等. 人体震颤定量检测仪在临床的初步应用. 中国康复理论与实践, 2006, 12(6): 521-522
7. 高强, 何成奇. 帕金森病患者运动功能评定与运动疗法的进展. 中国康复医学杂志, 2008, 23(5): 473-476
8. 汪丰, 邹亚, 乔子晏, 等. 帕金森患者步行运动的定量分析. 东南大学学报:自然科学版, 2015, 45(2): 266-269
9. Espay A J, Giuffrida J P, Chen R, et al. Differential response of speed, amplitude, and rhythm to dopaminergic medications in Parkinson’s disease. Mov Disord, 2011, 26(14): 2504-2508.
10. Rigas G, Tzallas A T, Tsipouras M G, et al. Assessment of tremor activity in the Parkinson’s disease using a set of wearable sensors. IEEE Trans Inf Technol Biomed, 2012, 16(3): 478-487.
11. Sterpi L, Caroli A, Meazza E, et al. Lower limb spasticity assessment using an inertial sensor: a reliability study. Physiol Meas, 2013, 34(11): 1423-1434.
12. Heldman D A, Pulliam C L, Mendoza E U, et al. Computer-Guided deep brain stimulation programming for Parkinson’s disease. Neuromodulation, 2016, 19(2): 127-132.
13. Mera T O, Burack M A, Giuffrida J P. Quantitative assessment of levodopa-induced dyskinesia using automated motion sensing technology, Conf Proc IEEE Eng Med Biol Soc, 2012: 154-157.
14. Maetzler W, Domingos J, Srulijes K, et al. Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord, 2013, 28(12): 1628-1637.
15. Deutch A Y. Parkinson’s disease redefined. Lancet Neurol, 2013, 12(5): 422-423.
16. 李亮, 俞乾, 徐宝腾, 等. 帕金森病患者多节点运动监测可穿戴设备. 生物医学工程学杂志, 2016(6): 1183-1190
17. 史峰, 王小川, 郁磊, 等. MATLAB 神经网络 30 个案例分析. 北京: 北京航空航天大学出版社, 2010: 1-20.