生物医学工程学杂志

生物医学工程学杂志

U 型骶骨骨折固定的有限元分析

查看全文

采用有限元法对三种 U 型骶骨骨折后手术固定模型的生物力学特性进行了研究。在之前建立并验证有效的完整腰椎—骨盆模型的基础上,建立了三种 U 型骶骨骨折手术固定模型:① S1S2 贯穿螺钉(S1S2),② L4–L5 椎弓根螺钉 + 髂骨翼螺钉(L4L5 + IS),③ L4–L5 椎弓根螺钉 + S1 贯穿螺钉 + 髂骨翼螺钉(L4L5 + S1 + IS)。然后,通过对 L4 上表面施加 400 N 竖直向下的力以及 7.5 N·m 不同方向的扭矩(前屈、后伸、轴向旋转、轴向侧弯),对比三种固定方式在坐姿和站姿下产生的骨折缝隙分离值和最大应力的差异。研究结果表明,在不同姿态下,不同手术组产生的骨缝隙分离值为:L4L5 + S1 + IS 远小于 L4L5 + IS 和 S1S2。对于内植入物而言,上述三种固定方式产生的最大应力值为 L4L5 + IS > L4L5 + S1 + IS > S1S2;对于椎间盘而言,上述三种固定方式产生的最大应力值为 S1S2 远大于 L4L5 + S1 + IS 和 L4L5 + IS。综合考虑,对于 U 型骶骨骨折而言,可以优先考虑 L4L5 + S1 + IS 固定方式进行固定。本文研究的目的在于通过比较采用三种不同的内固定方式固定 U 型骶骨骨折后的生物力学的差异,进而为临床手术提供有效的参考。

Finite element method (FEM) was used to investigate the biomechanical properties of three types of surgical fixations of U-shaped sacral fractures. Based on a previously established and validated complete lumbar-pelvic model, three models of surgical fixations of U-shaped sacral fractures were established: ① S1S2 passed through screw (S1S2), ② L4–L5 pedicle screw + screw for wing of ilium (L4L5 + IS), and ③ L4–L5 pedicle screw + S1 passed through screw + screw for wing of ilium (L4L5 + S1 + IS). A 400 N force acting vertically downward, along with torque of 7.5 N·m in different directions (anterior flexion, posterior extension, axial rotation, and axial lateral bending), was exerted on the upper surface of L4. Comparisons were made on differences in separation of the fracture gap and maximum stress in sitting and standing positions among three fixation methods. This study showed that: for values of separation of the fracture gap produced by different operation groups in different positions, L4L5 + S1 + IS was far less than L4L5 + IS and S1S2. For internal fixators, the maximum stress value produced was: L4L5 + IS > L4L5 + S1 + IS > S1S2. For the intervertebral disc, the maximum stress value produced by S1S2 is much larger than that of L4L5 + S1 + IS and L4L5 + IS. In a comprehensive consideration, L4L5 + S1 + IS could be prioritized for fixation of U-shaped sacral fractures. The objective of this research is to compare the biomechanical differences of three different internal fixation methods for U-shaped sacral fractures, for the reference of clinical operation.

关键词: U 型骶骨骨折; S1S2 贯穿螺钉; L4–L5 椎弓根螺钉; 髂骨翼螺钉; 骨折缝隙分离值

Key words: U-shaped sacral fractures; S1S2 passed through screw; L4–L5 pedicle screw; screw for wing of ilium; value of separation of the fracture gap

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Gibbons K J, Soloniuk D S, Razack N. Neurological injury and patterns of sacral fractures. J Neurosurg, 1990, 72(6): 889-893.
2. 贾健, 胡永成, 张铁良, 等. 骶骨骨折的诊治现状. 中华骨科杂志, 2009, 29(12): 1168-1176.
3. Hart R A, Badra M I, Madala A, et al. Use of pelvic incidence as a guide to reduction of H-type spino-pelvic dissociation injuries. J Orthop Trauma, 2007, 21(6): 369-374.
4. Robertson P A, Sherwood M J, Hadlow A T. Lumbosacral dislocation injuries: management and outcomes. J Spinal Disord Tech, 2005, 18(3): 232-237.
5. 张伟, 郭兴锋, 张竞, 等. 应用椎弓根系统经腰-髂间固定治疗骶骨骨折. 中国修复重建外科杂志, 2010, 24(5): 521-524.
6. König M A, Jehan S, Boszczyk A A, et al. Surgical management of U-shaped sacral fractures: a systematic review of current treatment strategies. European Spine Journal, 2012, 21(5): 829-836.
7. Gribnau A J, van Hensbroek P B, Haverlag R, et al. U-shaped sacral fractures: surgical treatment and quality of life. Injury, 2009, 40(10): 1040-1048.
8. Keating J F, Werier J, Blachut P, et al. Early fixation of the vertically unstable pelvis: the role of iliosacral screw fixation of the posterior lesion. J Orthop Trauma, 1999, 13(2): 107-113.
9. Zhao Y, Zhang S, Sun T, et al. Mechanical comparison between lengthened and short sacroiliac screws in sacral fracture fixation: a finite element analysis. Orthopaedics & Traumatology, 2013, 99(5): 601-606.
10. Käch K, Trentz O. Distraction spondylodesis of the sacrum in "vertical shear lesions” of the pelvis. Der Unfallchirurg, 1994, 97(1): 28-38.
11. Schildhauer T A, Ledoux W R, Chapman J R, et al. Triangular osteosynthesis and iliosacral screw fixation for unstable sacral fractures: a cadaveric and biomechanical evaluation under cyclic loads. J Orthop Trauma, 2003, 17(1): 22-31.
12. Berber O, Amis A A, Day A C. Biomechanical testing of a concept of posterior pelvic Reconstruction in rotationally and vertically unstable fractures. Journal of Bone and Joint Surgery-British Volume, 2011, 93B(2): 237-244.
13. Griffin D R, Starr A J, Reinert C M, et al. Vertically unstable pelvic fractures fixed with percutaneous iliosacral screws: does posterior injury pattern predict fixation failure? J Orthop Trauma, 2006, 20(1): S30-S36.
14. Chen Hongwei, Liu Guodong, Fei Jun, et al. Treatment of unstable posterior pelvic ring fracture with percutaneous reconstruction plate and percutaneous sacroiliac screws: a comparative study. J Orthop Sci, 2012, 17(5): 580-587.
15. Schildhauer T A, Bellabarba C, Nork S E, et al. Decompression and lumbopelvic fixation for sacral fracture-dislocations with spino-pelvic dissociation. J Orthop Trauma, 2006, 20(7): 447-457.
16. Bellabarba C, Schildhauer T A, Vaccaro A R, et al. Complications associated with surgical stabilization of high-grade sacral fracture dislocations with spino-pelvic instability. Spine, 2006, 31(11 Sl): S80-S88.
17. Piltz S, Rubenbauer B, Böcker W. Reduction and fixation of displaced U-shaped sacral fractures using lumbopelvic fixation: technical recommendations. European Spine Journal, 2018, 27(12): 3025-3033.
18. 易成腊, 刘振辉, 白祥军, 等. 腰椎-骨盆固定治疗U型骶骨骨折. 中华创伤骨科杂志, 2012, 14(9): 767-771.
19. Du Chengfei, Mo Zhongjun, Tian Shan, et al. Biomechanical investigation of thoracolumbar spine in different postures during ejection using a combined finite element and multi-body approach. Int J Numer Method Biomed Eng, 2014, 30(11): 1121-1131.
20. Panagiotacopulos N D, Pope M H, Krag M H, et al. Water content in human intervertebral discs. Part I. Measurement by magnetic resonance imaging. Spine, 1987, 12(9): 912-917.
21. Mason L W, Chopra I, Mohanty K. The percutaneous stabilisation of the sacroiliac joint with hollow modular Anchorage screws:a prospective out-come study. Eur Spine J, 2013, 22(10): 2325-2331.
22. Oonishi H, Isha H, Hasegawa T. Mechanical analysis of the human pelvis and its application to the artificial hip joint-by means of the three dimensional finite element method. J Biomech, 1983, 16(6): 427-444.
23. Dalstra M, Huiskes R, Vanerning L. Development and validation of a three-dimensional finite-element model of the pelvic bone. Journal of Biomechanical Engineering, 1995, 117(3): 272-278.
24. Lu Y M, Hutton W C, Gharpuray V M. The effect of fluid loss on the viscoelastic behavior of the lumbar intrevertebral disc in compression. J Biomech Eng, 1998, 120(1): 48-54.
25. Faizan A, Sairyo K, Goel V K, et al. Biomechanical rationale of ossification of the secondary ossification center on apophyseal bony ring fracture: a biomechanical study. Clinical Biomechanics, 2007, 22(10): 1063-1067.
26. Zhang Lihai, Peng Ye, Du Chengfei, et al. Biomechanical study of four kinds of percutaneous screw fixation in two types of unilateral sacroiliac joint dislocation: a finite element analysis. Injury, 2014, 45(12): 2055-2059.
27. 都承斐, 李俊伟, 刘海英, 等. 随动载荷对腰椎小关节接触力的影响. 医用生物力学, 2017, 32(4): 363-368.
28. Schmidt H, Heuer F, Simon U, et al. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clinical Biomechanics, 2006, 21(4): 337-344.
29. Diwan A D, Parvataneni H K, Khan S N, et al. Current concepts in intervertebral disk restoration. Orthopedic Clinics, 2000, 31(3): 453-464.
30. 郑启新, 邹枕玮, 郭晓东. 腰椎间盘退变性疾病的研究进展及展望. 中华实验外科杂志, 2010, 27(11): 1573-1576.