生物医学工程学杂志

生物医学工程学杂志

面向鲤鱼机器人控脑技术的磁共振坐标转换方法研究及应用

查看全文

为解决鲤鱼脑组织坐标准确定位问题,本文提出一种将鲤鱼脑组织磁共振成像坐标转换为应用脑立体定位仪进行电极植入所需坐标的方法。本研究应用 3.0T 磁共振成像仪对鲤鱼颅脑成像,自主建立颅脑三维立体定位坐标系、颅骨表面辅助三维坐标系和脑组织内部辅助三维坐标系,经两次坐标转换,将脑电极植入位点磁共振图像坐标转换到三维立体定位坐标系中以引导电极植入。实验分 A、B 两组,A 组为磁共振成像仪结合脑立体定位仪组,B 组为脑图谱结合脑立体定位仪组,每组鲤鱼 20 尾(n = 20),分别应用两种方法将电极植入小脑运动区。进行鲤鱼机器人水下实验检验,结果表明 A 组和 B 组植入电极准确度分别为 90% 和 60%,A 组成功率明显高于 B 组(P < 0.05)。故本文的新方法能够准确定位鲤鱼脑组织的坐标。

To solve the problem of precise positioning of carp brain tissue coordinates, it is proposed in this paper for a method for transforming the coordinates of magnetic resonance imaging of carp brain tissue into the coordinates of electrode implantation using a brain stereotaxic apparatus. In this study, the 3.0T magnetic resonance imaging instrument was used to scan the carp brain. We independently established the three-dimensional positioning coordinate system of the brain, the three-dimensional coordinate assistance system of skull surface and the three-dimensional coordinate assistance system in brain tissue. After two coordinate transformations, the magnetic resonance image coordinates of the brain electrodes implantation sites were converted into the three-dimensional stereotactic coordinate system to guide the electrodes implantation. The experimental groups were divided into two groups, A and B. Group A was the group of magnetic resonance imaging apparatus combining with the brain stereotaxic apparatus, and group B was the group of brain atlas combining with the brain stereotaxic apparatus. Each group had 20 tails of carps (n = 20). This two methods were used to implant the electrodes into the cerebellar motor area. The underwater experiments of the carp robots were carried out to test the two methods. The results showed that the accuracy of the implanted electrodes were 90% in group A and 60% in group B. The success rate of group A was significantly higher than that of group B (P < 0.05). Therefore, the new method in this paper can accurately determine the coordinates of carp brain tissue.

关键词: 鲤鱼水生动物机器人; 控脑技术; 磁共振成像; 脑立体定位; 磁共振坐标转换

Key words: carp aquatic animal robot; brain control technique; magnetic resonance imaging; brain stereotaxic localization; magnetic resonance coordinate conversion

引用本文: 彭勇, 王婷婷, 王占秋, 杜丹, 李京龙, 韩晓晓, 刘佳宁, 王爱迪, 周向前. 面向鲤鱼机器人控脑技术的磁共振坐标转换方法研究及应用. 生物医学工程学杂志, 2018, 35(6): 845-851. doi: 10.7507/1001-5515.201807059 复制

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 魏庆. 美海军秘密研发" 鲨鱼特工”. 中国国防报, 2012-02-28(014).
2. 袁海. 最棒的特工. 重庆晚报, 2005-12-30.
3. Kobayashi N, Yoshida M, Matsumoto N, et al. Artificial control of swimming in goldfish by brain stimulation: Confirmation of the midbrain nuclei as the swimming center. Neurosci Lett, 2009, 452(1): 42-46.
4. 郭策, 戴振东, 孙久荣. 生物机器人的研究现状及其未来发展. 机器人, 2005, 27(2): 187-192.
5. 秉志. 鲤鱼组织. 北京: 科学出版社, 1983.
6. Holzer R, Shimoyama I. Locomotion control of a bio robotic system via electric stimulation// Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Grenoble, France: IEEE, 1997: 1514-1519.
7. Talwar S K, Xu Shaohua, Hawley E S, et al. Rat navigation guided by remote control. Nature, 2002, 417(6884): 37-38.
8. Weiss R, Post W, Writer S. Monkeys control robotic arm with brain implants. Washington Post, 2003-10-13(A01).
9. 张韶岷, 王鹏, 江君, 等. 大鼠遥控导航及其行为训练系统的研究. 中国生物医学工程学报, 2007, 26(6): 830-836.
10. 俞方平. 全球首只机器人鸟在青岛问世——比机器人先进. 青岛早报, 2007-02-26.
11. 董满收, 蔡雷, 王浩, 等. 电刺激家鸽中脑诱导运动的初步研究. 生物学杂志, 2012, 29(4): 33-35.
12. 杨俊卿, 苏学成, 槐瑞托, 等. 基于新型多通道脑神经刺激遥控系统的动物机器人研究. 自然科学进展, 2007, 17(3): 379-384.
13. 王文波. 大壁虎运动人工诱导的基础研究. 南京: 南京航空航天大学, 2008.
14. Peng Yong, Wu Yunhui, Yang Yulin, et al. Study on the control of biological behavior on carp induced by electrophysiological stimulation in the corpus cerebella// International Conference on Electronic Engineering and Information Technique. Harbin, China: IEEE, 2011: 502-505.
15. 刘颖杰. 家兔动物机器人行为控制技术的研究. 秦皇岛: 燕山大学, 2013.
16. 苏学成, 槐瑞托, 杨俊卿, 等. 控制动物机器人运动行为的脑机制和控制方法. 中国科学: 信息科学, 2012, 42(9): 1130-1146.
17. Wu Junlin, Zhang Jilei, Du Xiaoxia, et al. Evaluation of the distribution of adipose tissues in fish using magnetic resonance imaging (MRI). Aquaculture, 2015, 448: 112-122.