生物医学工程学杂志

生物医学工程学杂志

基于结构拓扑优化的股骨近端生物力线特征研究

查看全文

骨折治疗常采用内固定法。为实现骨折的解剖复位和有效固定,内固定件的放置应顺应骨的生物力线,并适应骨皮质厚薄的特定解剖形态特征。为了探究人体骨骼生物力线和皮质厚薄分布特征及形成规律,本文以股骨近端为研究对象,应用三维重建技术建立三维模型;并以人类常见的单腿站立、外展和内收三种行为动作为工况,通过有限元分析得到股骨近端的生理应力分布情况。然后,本文运用结构拓扑优化方法模拟股骨近端在三种行为动作的综合作用下皮质厚薄的结构形态;并通过对比股骨近端解剖形态特征,分析股骨近端生物力线分布走向和骨皮质厚薄的特征及形成规律。研究结果表明,骨骼结构的生物力线和皮质厚薄形态特征及形成规律取决于人类活动时承受的载荷,生物力线的分布走向与骨生理承载时骨小梁排向和骨皮质纹路走向及坚实程度有关。本文提出的分析手段为确定骨骼的生物力线与皮质厚薄分布特征提供了一种解决方案,得出的结论或可指导骨折内固定件的合理放置。

Internal fixator is usually adopted in the treatment of bone fractures. In order to achieve anatomical reduction and effective fixation of fractures, the placement of internal fixators should comply with the biology force line of the bone and adapt to the specific anatomical morphological characteristics of the cortical bone. In order to investigate the distribution characteristics and formation regularity of biology force line and cortical thickness of human bone, three-dimensional model of proximal femur is established by using three-dimensional reconstruction technique in this paper. The normal physiological stress distribution of proximal femur is obtained by finite element analysis under three kinds of behavior conditions: one-legged stance, abduction and adduction. The structural topology optimization method is applied to simulate the cortex of the proximal femur under the combined action of three kinds of behavior conditions, and the anatomic morphological characteristics of the proximal femur are compared. The distribution trend of biology force line of proximal femur and the characteristics of cortex are analyzed. The results show that the biology force lines of bone structure and the morphological characteristics of cortex depend on the load of human activities. The distribution trend of biology force line is related to the direction of trabecular bone and the ridge trend and firmness of cortex when bone is loaded physiologically. The proposed analytical method provides a solution to determine the biology force line of bone and the distribution characteristics of cortex. The conclusions obtained may guide the reasonable placement of internal fixator components of fracture.

关键词: 生物力线; 皮质厚薄; 结构拓扑优化; 股骨近端

Key words: biology force line; cortex thickness; structural topology optimization; proximal femur

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Garces G L, Yanez A, Cuadrado A A. Influence of the number and position of stripped screws on plate-screw construct biomechanical properties. Injury- International Journal of the Care of the Injured, 2017, 48(6): S54-S59.
2. 马福元, 杨铁毅, 姜锐, 等. 肱骨近端锁定加压钢板置入内固定治疗复杂肱骨近端骨折的并发症. 中国组织工程研究, 2013, 17(48): 8381-8387.
3. 詹俊锋, 周云, 吕浩, 等. 钢板治疗股骨干骨折失败原因分析. 生物医学工程与临床, 2014, 18(6): 573-577.
4. 陈庆雄, 陈柏龄, 黎艺强. 股骨干骨折术后钢板断裂 17 例原因分析. 中国矫形外科杂志, 2014, 22(3): 281-282.
5. Kandemir U, Augat P, Konowalczyk S, et al. Implant material, type of fixation at the shaft, and position of plate modify biomechanics of distal femur plate osteosynthesis. J Orthop Trauma, 2017, 31(8): E241-E246.
6. 汤凌. 前置与上置钢板内固定治疗锁骨中段骨折的生物力学对比分析. 创伤外科杂志, 2016, 18(6): 334-337.
7. Uzer G, Yildiz F, Batar S, et al. Biomechanical comparison of three different plate configurations for comminuted clavicle midshaft fracture fixation. Journal of Shoulder and Elbow Surgery, 2017, 26(12): 2200-2205.
8. Simsek S, Yigitkanli K, Seckin H, et al. Ideal screw entry point and projection angles for posterior lateral mass fixation of the Atlas: an anatomical study. European Spine Journal, 2009, 18(9): 1321-1325.
9. Xu Yongqiang, Lin Chuangxin, Zhang Lifeng, et al. Anterograde fixation module for posterior acetabular column fracture: computer-assisted determination of optimal entry point, angle, and length for screw insertion. Medical Science Monitor, 2016, 22: 3106-3112.
10. 陈秉智, 顾元宪, 吕德成, 等. 骨折内固定中钢板位置对钢板刚度影响的理论分析和数值模拟. 生物医学工程学杂志, 2003, 20(3): 425-429.
11. 刘川. 锁骨中段骨折修复:重建钢板前置与上置的生物力学差异. 中国组织工程研究, 2014, 18(53): 8646-8650.
12. 张春才, 禹宝庆, 许硕贵, 等. 应用生理性成骨力值概念治疗骨折与骨不连——兼论 MO 现象与有效固定. 中国骨伤, 2007, 20(6): 361-363.
13. 张春才, 许硕贵, 纪方. 髋臼骨折治疗学: 新概念与新技术. 上海: 上海科学技术出版社, 2015.
14. 张国栋, 廖维靖, 陶圣祥, 等. 股骨有限元分析赋材料属性的方法. 中国组织工程研究与临床康复, 2009, 13(43): 8436-8441.
15. Goda I, Ganghoffer J F, Czarnecki S A, et al. Optimal internal architectures of femoral bone based on relaxation by homogenization and isotropic material design. Mech Res Commun, 2016, 76: 64-71.
16. Cai Kun, Luo Zhen, Wang Yu. Topology optimization for human proximal femur considering bi-modulus behavior of cortical bones// 3rd World Congress of Global Optimization (WCGO) , Advances in Global Optimization, 2015, 95: 263-270.
17. Jang I G, Kim I Y. Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J Biomech, 2008, 41(11): 2353-2361.
18. Yosibash Z, Padan R, Joskowicz L, et al. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. J Biomech Eng, 2007, 129(3): 297-309.
19. 陈妍妤, 应祖光, 朱振康, 等. 股骨纵向受压时的应力分布特征分析. 固体力学学报, 2016, 37(S1): 73-78.