生物医学工程学杂志

生物医学工程学杂志

非线性气道分级呼吸力学模型及健康成人自主呼吸模拟

查看全文

现有的单腔室呼吸力学集中参数模型采用一个线性或非线性气阻元件描述整个气管−支气管树对气流的阻碍作用,忽略了各级气道具备不同的力学特性这一事实。因此,基于气管−支气管树的解剖结构及各级气道的力学特性,本文将人体呼吸道分为上气道、陷闭气道、小气道三部分,建立了多腔室、非线性气道分级的呼吸力学集中参数模型。该模型以呼吸肌为自主呼吸动力,模拟了健康成人的自主潮气呼吸过程。结果显示,本文所构建的自主呼吸模型的计算结果与人体呼吸生理过程较为吻合,并与已有文献的研究结果相似,提示本模型可用于呼吸系统病理生理研究。

One-compartment lumped-parameter models of respiratory mechanics, representing the airflow resistance of the tracheobronchial tree with a linear or nonlinear resistor, are not able to describe the mechanical property of airways in different generations. Therefore, based on the anatomic structure of tracheobronchial tree and the mechanical property of airways in each generation, this study classified the human airways into three segments: the upper airway segment, the collapsible airway segment, and the small airway segment. Finally, a nonlinear, multi-compartment lumped-parameter model of respiratory mechanics with three airway segments was established. With the respiratory muscle effort as driving pressure, the model was used to simulate the tidal breathing of healthy adults. The results were consistent with the physiological data and the previously published results, suggesting that this model could be used for pathophysiological research of respiratory system.

关键词: 呼吸系统; 呼吸力学; 自主呼吸; 气道分级模型

Key words: respiratory system; respiratory mechanics; spontaneous breathing; airway-segmented model

引用本文: 刘天亚, 乔惠婷, 李德玉, 樊瑜波. 非线性气道分级呼吸力学模型及健康成人自主呼吸模拟. 生物医学工程学杂志, 2019, 36(1): 101-106. doi: 10.7507/1001-5515.201806007 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Weibel E R. Morphometry of the human lung. German: Springer-Verlag Berlin Heidelberg Gmbh, 1963: 110-135.
2. Ren Shuai, Cai Maolin, Shi Yan, et al. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system. Int J Numer Method Biomed Eng, 2018, 34(3): e2929.
3. Crooke P S, Hotchkiss J R, Marini J J. Linear and nonlinear mathematical models for noninvasive ventilation. Math Comput Model, 2002, 35(11/12): 1297-1313.
4. 易韦韦, 张玘, 王跃科, 等. 基于呼吸机的人工呼吸系统力学建模与仿真. 系统仿真学报, 2009, 21(15): 4892-4895.
5. 张立藩, 张荣. 呼吸力学系统的模型与辨识. 航天医学与医学工程, 1990, 3(1): 58-65.
6. 丰继华, 李文娟, 陈建华, 等. 集总参数呼吸机模型仿真研究. 系统仿真学报, 2006, 18(10): 2959-2962.
7. Huo B, Fu R R. Recent advances in theoretical models of respiratory mechanics. Acta Mechanica Sinica, 2012, 28(1): 1-7.
8. Polak A G, Mroczka J. Nonlinear model for mechanical ventilation of human lungs. Comput Biol Med, 2006, 36(1): 41-58.
9. Golden J F. Clark J W Jr, Stevens P M. Mathematical modeling of pulmonary airway dynamics. IEEE Trans Biomed Eng, 1973, 20(6): 397-404.
10. Avanzolini G, Barbini P, Bernardi F, et al. Role of the mechanical properties of tracheobronchial airways in determining the respiratory resistance time course. Ann Biomed Eng, 2001, 29(7): 575-586.
11. Barbini P, Cevenini G, Avanzolini G. Nonlinear mechanisms determining expiratory flow limitation in mechanical ventilation: a model-based interpretation. Ann Biomed Eng, 2003, 31(8): 908-916.
12. Olender M F. Clark J W Jr, stevens P M.analog computer simulation of maximum expiratory flow limitation. IEEE Trans Biomed Eng, 1976, 23(6): 445-452.
13. Liu C H, Niranjan S C, Clark J W, et al. Airway mechanics, gas exchange, and blood flow in a nonlinear model of the normal human lung. J Appl Physiol, 1998, 84(4): 1447-1469.
14. Maarsingh E W, Van Eykern L A, Sprikkelman A B, et al. Respiratory muscle activity measured with a noninvasive EMG technique: technical aspects and reproducibility. J Appl Physiol, 2000, 88(6): 1955-1961.
15. Athanasiades A, Ghorbel F, Clark J W, et al. Energy analysis of a nonlinear model of the normal human lung. Journal of Biological Systems, 2000, 8(2): 115-139.
16. Mead J. Mechanical properties of lungs. Physiol Rev, 1961, 41(2): 281-330.
17. 范少光, 汤浩, 潘伟丰. 人体生理学, 译. 第 2 版. 北京: 北京医科大学出版社, 2000: 164.
18. Kulish V. Human respiration: anatomy and physiology, mathematical modeling, numerical simulation and application. UK: WIT Press. 2006: 97.
19. Jodat R W, Horgan J D, Lange R L. Simulation of respiratory mechanics. Biophys J, 1966, 6(6): 773-785.
20. Hamid Q, Shannon J, Martin J. Physiologic basis of respiratory disease. Canada: BC Decker Inc, 2005: 55-60.
21. 慢性阻塞性肺疾病诊治指南(2013 年修订版). 中国医学前沿杂志(电子版), 2014, 6(2): 67-80.
22. Pelosi P, Goldner M, Mckibben A, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. American Journal of Respiratory and Critical Care Medicine, 2001, 164(1): 122-130.
23. Pecchiari M, Loring S H, D'angelo E. Esophageal pressure as an estimate of average pleural pressure with lung or chest distortion in rats. Respir Physiol Neurobiol, 2013, 186(2): 229-235.
24. Hoppin F G, Green I D, Mead J, et al. Distribution of pleural surface pressure in dogs. J Appl Physiol, 1969, 27(6): 863-873.
25. 霍波, 付瑞荣, 梁晨, 等. 建立基于个体生理监护信息的呼吸力学模型. 医用生物力学, 2012, 27(4): 409-415.
26. Tsai N C, Lee R M. Interaction between cardiovascular system and respiration. Appl Math Model, 2011, 35(11): 5460-5469.
27. Chase J G, Preiser J C, Dickson J L, et al. Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed Eng Online, 2018, 17: 24.