生物医学工程学杂志

生物医学工程学杂志

基于细胞的指数富集配体系统进化技术的肺癌细胞核酸适配体的筛选及其在肿瘤诊治中的应用

查看全文

核酸适配体是经过指数富集配体系统进化技术(SELEX)筛选得到的寡核苷酸序列。已有研究表明,核酸适配体在肿瘤诊断及治疗方面具有良好的应用前景。因此,本文主要针对肺癌细胞核酸适配体的筛选、表征等方面展开论述,初步探讨核酸适配体作为靶向载体和靶向药物在肿瘤诊断治疗中的作用,为肿瘤的早期诊断及早期治疗提供新思路。

Nucleic acid aptamer is an oligonucleotide sequence screened by the exponential enrichment ligand system evolution technology (SELEX). Previous studies have shown that nucleic acid aptamer has a good application prospect in tumor diagnosis and treatment. Therefore, we reviewed the selection and identification of nucleic acid aptamer of lung cancer cells in recent years, and discussed the effect of aptamer as targeting drugs and targeting vectors on the diagnosis of tumors, which provide a new idea for early diagnosis and treatment of tumor.

关键词: 基于细胞的指数富集配体系统进化技术; 核酸适配体; 肺癌细胞; 肿瘤诊断与治疗

Key words: systematic evolution of ligands for cell exponential enrichment technology; aptamer; lung cancer cells; tumor diagnosis and treatment

引用本文: 许金苓, 廖世奇, 田彩萍, 张蕾, 翟蒙, 陈聪盈, 唐金舟, 曾家豫. 基于细胞的指数富集配体系统进化技术的肺癌细胞核酸适配体的筛选及其在肿瘤诊治中的应用. 生物医学工程学杂志, 2018, 35(6): 964-969. doi: 10.7507/1001-5515.201806006 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Chen Wanqing, Zheng Rongshou, Baade P D, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
2. Gold L, Janjic N, Jarvis T, et al. Aptamers and the RNA world, past and present. Cold Spring Harb Perspect Biol, 2012, 4(3): 829-841.
3. Mckeague M, Mcconnell E M, Cruz-Toledo J A, et al. Analysis of in vitro aptamer selection parameters. J Mol Evol, 2015, 81(5/6): 150-161.
4. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510.
5. Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822.
6. Chen Chan, Zhou Shan, Cai Yongqiang, et al. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. Npj Precision Oncology, 2017, 1(1): 37.
7. Pang Xuehui, Cui Cheng, Wan Shuo, et al. Bioapplications of Cell-SELEX-generated aptamers in cancer diagnostics, therapeutics, theranostics and biomarker discovery: a comprehensive review. Cancers (Basel), 2018, 10(2): 47.
8. Shangguan Dihua, Li Ying, Tang Zhiwen, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A, 2006, 103(32): 11838-11843.
9. Quang N N, Miodek A, Cibiel A, et al. Selection of aptamers against whole living cells: from Cell-SELEX to identification of biomarkers. Synthetic Antibodies, 2017, 1575: 253-272.
10. Dou Xiaoqian, Wang Hua, Zhang Jing, et al. Aptamer-drug conjugate: targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity. Int J Nanomedicine, 2018, 13: 763-776.
11. Hori S I, Herrera A, Rossi J J, et al. Current advances in aptamers for cancer diagnosis and therapy. Cancers (Basel), 2018, 10(1): 9.
12. Catuogno S, Esposito C L, de Franciscis V. Developing aptamers by cell-based SELEX. Methods in Molecular Biology, 2016, 1380: 33.
13. 吴巧艺. 基于 Cell-SELEX 胶质肉瘤与胶质瘤干细胞核酸适配体的筛选及初步应用研究. 福州: 福建医科大学, 2016.
14. Wu Qiaoyi, Wang Yuzhe, Wang Hongyao, et al. DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells. Analyst, 2018, 143(10): 2267-2275.
15. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 2013, 63(1): 11-30.
16. Chen H W, Medley C D, Sefah K, et al. Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem, 2008, 3(6): 991-1001.
17. Kunii T, Ogura S I, Mie Masayasu, et al. Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX. Analyst, 2011, 136(7): 1310-1312.
18. Zhao Zilong, Xu Li, Shi Xiaoli, et al. Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst, 2009, 134(9): 1808-1814.
19. Zamay G S, Kolovskaya O S, Zamay T N, et al. Aptamers selected to postoperative lung adenocarcinoma detect circulating tumor cells in human blood. Molecular Therapy, 2015, 23(9): 1486-1496.
20. He Jinfeng, Tan Wei, Ma Jingping. Circulating tumor cells and DNA for real-time EGFR detection and monitoring of non-small-cell lung cancer. Future Oncology, 2017, 13(9): 787-797.
21. Zamay G S, Ivanchenko T I, Zamay T N, et al. DNA aptamers for the characterization of histological structure of lung adenocarcinoma. Mol Ther Nucleic Acids, 2017, 6: 150-162.
22. Wu Chunlei, Liu Jianbo, Zhang Pengfei, et al. A recognition-before-labeling strategy for sensitive detection of lung cancer cells with a quantum dot-aptamer complex. Analyst, 2015, 140(17): 6100-6107.
23. 李金明, 章志怀, 彭振元. SELEX 技术筛选特异性结合高转移性肺癌细胞 Anip973 的单链 DNA 适配子. 武汉大学学报: 医学版, 2011, 32(3): 329-333.
24. Wang Qing, Zhou Chenchen, Yang Xiaohai, et al. Probing interactions between human lung adenocarcinoma A549 cell and its aptamers at single-molecule resolution. Journal of Molecular Recognition, 2014, 27(11): 676-682.
25. Nabavinia M S, Charbgoo F, Alibolandi M, et al. Comparison of flow cytometry and ELASA for screening of proper candidate aptamer in Cell-SELEX pool. Appl Biochem Biotechnol, 2018, 184(2): 444-452.
26. Sett A, Borthakur B B, Bora U. Selection of DNA aptamers for extra cellular domain of human epidermal growth factor receptor 2 to detect HER2 positive carcinomas. Clinical & Translational Oncology, 2017, 19(8): 976-988.
27. Yuan Baoyin, Jiang Xiaochun, Chen Yuanyuan, et al. Metastatic cancer cell and tissue-specific fluorescence imaging using a new DNA aptamet developed by Cell-SELEX. Talanta, 2017, 170: 56-62.
28. Ott W, Jobst M A, Schoeler C, et al. Single-molecule force spectroscopy on polyproteins and receptor-ligand complexes: The current toolbox. J Struct Biol, 2017, 197(1, SI): 3-12.
29. Liu Lishang, Lu Xiaoling, Zhao Yongxiang. Aptamer-Based strategies for cancer diagnosis and therapy. J Nanosci Nanotechnol, 2016, 16(7): 6611-6621.
30. Mackey D, Kelly E, Nooney R. Modelling random antibody adsorption and immunoassay activity. Mathematical Biosciences and Engineering, 2016, 13(6, SI): 1159-1168.
31. Yin Meili, Li Zhenhua, Liu Zhen, et al. Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chemical Communications, 2012, 48(52): 6556-6558.
32. Jin Cheng, Qiu Liping, Li Jin, et al. Cancer biomarker discovery using DNA aptamers. Analyst, 2016, 141(2): 461-466.
33. Gold L, Ayers D, Bertino J, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One, 2010, 5(12): e15004.
34. Havel L S, Kline E R, Salgueiro A M, et al. Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene, 2015, 34(15): 1979-1990.
35. Almasi F, Gargari S M, Bitaraf F, et al. Development of a single stranded DNA aptamer as a molecular probe for LNCap cells using Cell-SELEX. Avicenna J Med Biotechnol, 2016, 8(3): 104-111.
36. Lai Weiyun, Wang Weiya, Chang Y C, et al. Synergistic inhibition of lung cancer cell invasion, tumor growth and angiogenesis using aptamer-siRNA chimeras. Biomaterials, 2014, 35(9): 2905-2914.
37. Perepelyuk M, Sacko K, Thangavel K, et al. Evaluation of MUC1-aptamer functionalized hybrid nanoparticles for targeted delivery of miRNA-29b to non-small cell lung cancer. Molecular Pharmaceutics, 2018, 15(3): 985-993.
38. Morita Y, Leslie M, Kameyama H, et al. Aptamer therapeutics in cancer: current and future. Cancers (Basel), 2018, 10(3): 80.
39. Ayatollahi S, Salmasi Z, Hashemi M, et al. Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. International Journal of Biochemistry & Cell Biology, 2017, 92: 210-217.