生物医学工程学杂志

生物医学工程学杂志

下肢外骨骼机器人柔顺特性的研究进展

查看全文

下肢外骨骼机器人是旨在帮助患有步行障碍的人重新获得腿部和关节的力量,以实现站立和行走等功能的可穿戴设备。与包含刚性机构的传统机器人相比,具有柔顺特性的下肢外骨骼机器人能在被动式弹性元件中储存和释放能量,同时最大限度地减少由于冲击引起的反作用力,提高人机交互的安全性。本文从驱动柔顺和关节柔顺两方面对下肢外骨骼机器人柔顺特性进行综述,分类介绍增强型、辅助型、康复型下肢外骨骼机器人,并对该领域未来发展趋势进行展望。

The lower extremity exoskeleton robot is a wearable device designed to help people suffering from a walking disorder to regain the power of the legs and joints to achieve standing and walking functions. Compared with traditional robots that include rigid mechanisms, lower extremity exoskeleton robots with compliant characteristics can store and release energy in passive elastic elements while minimizing the reaction force due to impact, so it can improve the safety of human-robot interaction. This paper reviews the compliant characteristics of lower extremity exoskeleton robots from the aspects of compliant drive and compliant joint, and introduces the augmentation, assistive, rehabilitation lower extremity exoskeleton robots. It also prospect the future development trend of lower extremity exoskeleton robots.

关键词: 下肢外骨骼机器人; 柔顺特性; 驱动柔顺; 关节柔顺

Key words: lower extremity exoskeleton robot; compliant characteristic; compliant drive; compliant joint

引用本文: 佀国宁, 黄琬婷, 李根生, 徐飞, 褚梦秋, 刘婧芳. 下肢外骨骼机器人柔顺特性的研究进展. 生物医学工程学杂志, 2019, 36(1): 157-163. doi: 10.7507/1001-5515.201804023 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Chen Bing, Ma Hao, Qin Laiyin, et al. Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation, 2016, 5: 26-37.
2. Kim H, Shin Y J, Kim J. Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. Mechatronics, 2017, 46: 32-45.
3. 王海莲, 张小栋, 李华聪. 士兵可穿戴下肢外骨骼机器人多元感知方法研究. 计算机测量与控制, 2015, 23(10): 3505-3507.
4. Pratt J E, Krupp B T, Morse C J, et al. The RoboKnee: an exoskeleton for enhancing strength and endurance during walking//IEEE Inter Conf Robot Auto, 2004: 2430-2435.
5. Ouyang Xiaoping, Ding Shuo, Fan Boqian, et al. Development of a novel compact hydraulic power unit for the exoskeleton robot. Mechatronics, 2016, 38: 68-75.
6. Hussain S, Xie Shengq, Jamwal P K. Control of a robotic orthosis for gait rehabilitation. Rob Auton Syst, 2013, 61(9): 911-919.
7. Pransky J. The Pransky interview: Russ Angold, co-founder and president of Ekso (TM) Labs. Industrial Robot-an International Journal, 2014, 41(4): 329-334.
8. Gandolla M, Guanziroli E, D’angelo A, et al. Automatic setting procedure for exoskeleton-assisted overground gait: proof of concept on stroke population. Front Neurorobot, 2018, 12: 10.
9. Wang Shiqian, Wang Letian, Meijneke C, et al. Design and control of the MINDWALKER exoskeleton. IEEE Trans Neural Syst Rehabil Eng, 2015, 23(2): 277-286.
10. Chen Bing, Zhong Chunhao, Ma Hao, et al. Sit-to-stand and stand-to-sit assistance for paraplegic patients with CUHK-EXO exoskeleton. Robotica, 2018, 36(4): 535-551.
11. Chen Bing, Zhong Chunhao, Zhao Xuan, et al. A wearable exoskeleton suit for motion assistance to paralysed patients. Journal of Orthopaedic Translation, 2017, 11: 7-18.
12. 谢峥, 王明江, 黄武龙, 等. 基于实时步态分析的行走辅助外骨骼机器人系统. 生物医学工程学杂志, 2017, 34(2): 265-270.
13. Meuleman J, van Asseldonk E, van Oort G, et al. LOPES II—Design and evaluation of an admittance controlled gait training robot with shadow-leg approach. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(3): 352-363.
14. Bayon C, Ramirez O, Serrano J I, et al. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Rob Auton Syst, 2017, 91: 101-114.
15. Feng Yongfei, Wang Hongbo, Du Yaxin, et al. Trajectory planning of a novel lower limb rehabilitation robot for stroke patient passive training. Advances in Mechanical Engineering, 2017, 9(12): 1-10.
16. Torrealba R R, Udelman S B, Fonseca-Rojas E D. Design of variable impedance actuator for knee joint of a portable human gait rehabilitation exoskeleton. Mechanism and Machine Theory, 2017, 116: 248-261.
17. Zhang Mingming, Cao Jinghui, Zhu Guoli, et al. Reconfigurable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR). Robot Auto Sys, 2017, 98: 213-221.
18. 朱文超, 徐秀林, 姚晓明, 等. 压差式气动减重康复步行训练系统的设计. 生物医学工程学杂志, 2017, 34(4): 565-571.
19. Bortole M, Venkatakrishnan A, Zhu Fangshi, et al. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J NeuroEng Rehabil, 2015, 12: 54.
20. Wu Junpeng, Gao Jinwu, Song Rong, et al. The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics, 2016, 33: 13-22.
21. Long Yi, Du Zhijiang, Chen Chaofeng, et al. Development and analysis of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng, 2017, 14(2): 272-283.
22. Karavas N, Ajoudani A, Tsagarakis N, et al. Tele-impedance based assistive control for a compliant knee exoskeleton. Rob Auton Syst, 2015, 73(SI): 78-90.
23. Hyun D J, Park H, Ha Taejun, et al. Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance. Rob Auton Syst, 2017, 95: 181-195.
24. Kardan I, Akbarzadeh A. Robust output feedback assistive control of a compliantly actuated knee exoskeleton. Rob Auton Syst, 2017, 98: 15-29.
25. 韩亚丽, 吴振宇, 许有熊, 等. 基于多模式弹性驱动器的膝关节外骨骼机械腿. 机器人, 2017, 39(4): 498-504.
26. Yu H Y, Huang S, Chen G, et al. Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans Robot, 2015, 31(5): 1089-1100.
27. Cestari M, Sanz-Merodio D, Arevalo J C. An adjustable compliant joint for lower-limb exoskeletons. IEEE-ASME Transactions on Mechatronics, 2015, 20(2): 889-898.
28. 赵彦峻, 葛文庆, 刘小龙, 等. 外骨骼机器人设计及其机械结构的有限元分析. 机床与液压, 2016, 44(3): 10-13, 51.
29. Chen Shan, Chen Zheng, Yao Bin, et al. Cascade force control of lower limb hydraulic exoskeleton for human performance augmentation//Proceedings of the Iecon 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, 2016: 512-517.
30. Strausser K A, Swift T A, Zoss A B, et al. Prototype medical exoskeleton for paraplegic mobility: first experimental results// Proceedings of the ASME Dynamic Systems and Control Conference, 2010: 453-458.
31. 何健, 王海波, 李雪峰, 等. 负重型下肢外骨骼液压动力单元的研究. 液压与气动, 2017, (11): 6-11.
32. 靳兴来, 朱世强, 张学群, 等. 液压驱动下肢助力外骨骼机器人膝关节结构设计及试验. 农业工程学报, 2017, 33(5): 26-31.
33. 唐志勇, 徐晓东, 熊珏, 等. 下肢液压驱动康复机器人机械设计与运动学研究. 液压与气动, 2014, (12): 31-35.
34. Lu Zhiguo, Huo Jun, Wang Yuce, et al. Design and simulation analysis of a lower limbs exoskeleton powered by hydraulic drive// 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), 2017: 173-177.
35. Yamamoto K, Hyodo K, Ishii M, et al. Development of power assisting suit for assisting nurse labor. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 2002, 45(3): 703-711.
36. 李超. 气动肌肉驱动的外骨骼助力系统研究. 杭州: 浙江大学, 2016.
37. Hashimoto Y, Nakanishi Y, Saga N, et al. Development of gait assistive device using pneumatic artificial muscle//IEEE 2016 Joint 8th Inter Conf Soft Comput Intell Sys, 2016: 710-713.
38. 滕燕, 杨罡, 王士允, 等. 多模式柔顺膝关节康复器设计及力分析. 机械制造与自动化, 2012, 41(2): 143-146.
39. Hong Y P, Koo D, Park J I, et al. The SoftGait: A simple and powerful Weight-Support device for walking and squatting//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 6336-6341.
40. Wan Shilong, Yang Mingxing, Xi Ruru, et al. Design and control strategy of humanoid lower limb exoskeleton driven by pneumatic artificial muscles//Proceedings of 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2016: 157-161.
41. Quy-Thinh D, Yamamoto S I. Tracking control of a robotic orthosis for gait rehabilitation: a feedforward-feedback control approach//2017 10th Biomedical Engineering International Conference (BMEICON), Japan: IEEE, 2017: 1-5.
42. Sarkar A, Dutta A. 8-DoF biped robot with compliant-links. Rob Auton Syst, 2015, 63(1): 57-67.
43. Wang Donghai, Lee K M, Ji Jingjing. A passive gait-based weight-support lower extremity exoskeleton with compliant joints. IEEE Transactions on Robotics, 2016, 32(4): 933-942.