生物医学工程学杂志

生物医学工程学杂志

日常无监督状态下的脉率变异性提取方法研究

查看全文

日常生活中脉率变异性(PRV)的提取常常受到运动、血流灌注的影响,因此本文提出了在耳后进行脉搏信号检测并提取 PRV 的方法,以提高日常 PRV 提取的准确性和稳定性。本文首先研制适合日常使用的耳后脉搏采集系统,其可通过蓝牙将数据传输至安卓手机进行日常 PRV 提取。然后,根据日常生活状态分别设计了静止、运动、咀嚼、说话状态下的 9 项试验,并同步采集单导联的心电信号和指部脉搏信号与耳后脉搏信号进行对比分析。根据信号波形、幅值、幅频特性的研究结果表明,耳后脉搏信号比传统采集于指部的脉搏信号稳定,且可保留更多的有效信息;从耳后脉搏信号中提取的 PRV 具有较高的准确率,9 项试验的准确率均高于 98.000%。因此,本文设计的耳后提取 PRV 方法具有准确率高、稳定性好、便于日常使用等特点,可为日常无监督状态下 PRV 的准确提取提供新的思路和途径。

The extraction of pulse rate variability(PRV) in daily life is often affected by exercise and blood perfusion. Therefore, this paper proposes a method of detecting pulse signal and extracting PRV in post-ear, which could improve the accuracy and stability of PRV in daily life. First, the post-ear pulse signal detection system suitable for daily use was developed, which can transmit data to an Android phone by Bluetooth for daily PRV extraction. Then, according to the state of daily life, nine experiments were designed under the situation of static, motion, chewing, and talking states, respectively. Based on the results of these experiments, synchronous data acquisition of the single-lead electrocardiogram (ECG) signal and the pulse signal collected by the commercial pulse sensor on the finger were compared with the post-auricular pulse signal. According to the results of signal wave, amplitude and frequency-amplitude characteristic, the post-ear pulse signal was significantly steady and had more information than finger pulse signal in the traditional way. The PRV extracted from post-ear pulse signal has high accuracy, and the accuracy of the nine experiments is higher than 98.000%. The method of PRV extraction from post-ear has the characteristics of high accuracy, good stability and easy use in daily life, which can provide new ideas and ways for accurate extraction of PRV under unsupervised conditions.

关键词: 日常无监督状态; 运动; 血流灌注; 耳后脉搏; 脉率变异性

Key words: daily unsupervised state; movement; blood perfusion; post-ear pulse signal; pulse rate variability

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Ernst G. Hidden Signals-The history and methods of heart rate variability. Frontiers In Public Health, 2017, 5(265): 1-12.
2. 迟相林, 周建华, 时萍, 等. 短时心率变异性非线性分析方法及其在临床医学中的应用. 生物医学工程学杂志, 2016, 33(1): 193-200.
3. Sommermeyer D, Zou D, Ficker J H, et al. Detection of cardiovascular risk from a photoplethysmographic signal using a matching pursuit algorithm. Med Biol Eng Comput, 2016, 54(7): 1111-1121.
4. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas, 2007, 28(3): R1.
5. Bhat S, Adam M, Hagiwara Y, et al. The biophysical parameter measurements from PPG signal. J Mech Med Biol, 2017, 17(7): 1740005.
6. 石萍, 喻洪流. 光电容积描记技术原理及其应用. 生物医学工程学杂志, 2013, 30(4): 899-904.
7. Alian A A, Shelley K H. Photoplethysmography. Best Pract Res Clin Anaesthesiol, 2014, 28(4): 395-406.
8. Ye J J, Lee K T, Chou Y Y, et al. Assessing pain intensity using photoplethysmography signals in chronic myofascial pain syndrome. Pain Practice, 2018, 18(3): 296-304.
9. Hernando A, Peláez-Coca M D, Lozano M T, et al. Autonomic nervous system measurement in hyperbaric environments using ECG and PPG signals. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 132-142.
10. Vandecasteele K, de Cooman T, Gu Ying, et al. Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment. Sensors, 2017, 17(10): 2338.
11. Pantelopoulos A, Faranesh A, Milescu A, et al. Screening of atrial fibrillation using wrist photoplethysmography from a fitbit tracker. Iproceedings, 2017, 3(1): e17.
12. Morey T E, Rice M J, Vasilopoulos T, et al. Feasibility and accuracy of nasal alar pulse oximetry. Br J Anaesth, 2014, 112(6): 1109-1114.
13. Awad A A, Ghobashy M A, Ouda W, et al. Different responses of ear and finger pulse oximeter wave form to cold presser test. Anesth Analg, 2001, 92(6): 1483-1486.
14. Baek H J, Shin J. Effect of missing inter-beat interval data on heart rate variability analysis using wrist-worn wearables. J Med Syst, 2017, 41(10): 147.
15. Tamura T, Maeda Y, Sekine M, et al. Wearable photoplethysmographic sensors-past and present. Electronics, 2014, 3(2): 282-302.
16. Kolhe P S, Leonard A G. The posterior auricular flap: anatomical studies. Br J Plast Surg, 1987, 40(6): 562-569.
17. Duisit J, Amiel H, Debluts D, et al. Single-artery human ear graft procurement: a simplified approach. Plast Reconstr Surg, 2017, 140(3): 599-603.
18. 丑永新, 张爱华, 欧继青, 等. 基于手机的动态脉率变异性信号提取与分析. 中国医疗器械杂志, 2015, 39(5): 313-317.
19. SparkFun Electronics. AD8232 heart rate monitor hookup guide. [2018-07-02]. https://learn.sparkfun.com/tutorials/ad8232-heart-rate-monitor-hookup-guide.
20. Analog Devices, Inc.. AD8232: Single-lead, heart rate monitor front end data sheet. [2018-07-02]. http://www.analog.com/media/en/technical-documentation/data-sheets/AD8232.pdf.
21. 张爱华, 王平, 丑永新. 基于动态差分阈值的脉搏信号峰值检测算法. 吉林大学学报: 工学版, 2014, 44(3): 847-853.