生物医学工程学杂志

生物医学工程学杂志

海洋源壳聚糖与海藻酸盐在生物医药领域的应用

查看全文

海洋源生物大分子具有资源丰富、功能独特、生物安全、成本低廉等特点,是生物医用材料研发的优良原料。海洋生物医用材料目前已成为生物医用材料产业的主要分支,符合全球倡导的“绿色产业、低碳经济”的发展大趋势,发展前景极为可观。壳聚糖与海藻酸盐是海洋源生物材料中商业化开发最多的两类材料,在伤口敷料、牙科材料、抗菌处理、药物控释、组织工程等领域均有广泛的应用。本文主要介绍壳聚糖与海藻酸盐的性质及其在生物医药领域的应用,以及作为医用材料发展面临的瓶颈与挑战。

Marine-derived biopolymers are excellent raw materials for biomedical products due to their abundant resources, good biocompatibility, low cost and other unique functions. Marine-derived biomaterials become a major branch of biomedical industry and possess promising development prospects since the industry is in line with the trend of " green industry and low-carbon economy”. Chitosan and alginates are the most commonly commercialized marine-derived biomaterials and have exhibited great potential in biomedical applications such as wound dressing, dental materials, antibacterial treatment, drug delivery and tissue engineering. This review focuses on the properties and applications of chitosan and alginates in biomedicine.

关键词: 壳聚糖; 海藻酸盐; 生物材料

Key words: chitosan; alginates; biomaterials

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 顾其胜, 位晓娟. 我国海洋生物医用材料研究现状和发展趋势. 中国材料进展, 2011, 30(4): 11-15, 29.
2. He Guanghua, Chen Xiang, Yin Yihua, et al. Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. J Biomater Sci Polym Ed, 2016, 27(4): 370-384.
3. Yin Tingjie, Zhang Ying, Liu Yanhong, et al. The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int J Pharm, 2018, 536(1): 231-240.
4. Follmann H D M, Martins A F, Nobre T M, et al. Extent of shielding by counterions determines the bactericidal activity of N, N, N-trimethyl chitosan salts. Carbohydr Polym, 2016, 137: 418-425.
5. de Britto D, Assis O B G. A novel method for obtaining a quaternary salt of chitosan. Carbohydr Polym, 2007, 69(2): 305-310.
6. Kulkarni A D, Patel H M, Surana S J, et al. N, N, N-Trimethyl chitosan: An advanced polymer with myriad of opportunities in nanomedicine. Carbohydr Polym, 2017, 157: 875-902.
7. Ahmed T A, Aljaeid B M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther, 2016, 10: 483-507.
8. Liu Li, Yang Jianping, Ju Xiaojie, et al. Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs. Soft Matter, 2011, 7(10): 4821-4827.
9. Yang Xiulan, Ju Xiaojie, Mu Xiaoting, et al. Core-shell chitosan microcapsules for programmed sequential drug release. ACS Appl Mater Interfaces, 2016, 8(16): 10524-10534.
10. Sheng Jianyong, Han Limei, Qin Jing, et al. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces, 2015, 7(28): 15430-15441.
11. Fonseca-Santos B, Chorilli M. An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1349-1362.
12. Logithkumar R, Keshavnarayan A, Dhivya S, et al. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym, 2016, 151: 172-188.
13. Abueva C D G, Jang D W, Padalhin A, et al. Phosphonate-chitosan functionalization of a multi-channel hydroxyapatite scaffold for interfacial implant-bone tissue integration. J Mater Chem B, 2017, 5(6): 1293-1301.
14. Huang Yixing, Zhang Xiaolei, Wu Aimin, et al. An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering. RSC Adv, 2016, 6(40): 33529-33536.
15. Zhang Jieyu, Neoh K G, Kang Entang. Electrical stimulation of adipose-derived mesenchymal stem cells and endothelial cells co-cultured in a conductive scaffold for potential orthopaedic applications. J Tissue Eng Regen Med, 2018, 12(4): 878-889.
16. Zhang Jieyu, Li Min, Kang Entang, et al. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomater, 2016, 32(期缺失): 46-56.
17. Zhang Jieyu, Neoh K G, Hu Xuefeng, et al. Combined effects of direct current stimulation and immobilized BMP-2 for enhancement of osteogenesis. Biotechnol Bioeng, 2013, 110(5): 1466-1475.
18. Yang Ying, Yang Shengbing, Wang Yugang, et al. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomater, 2016, 46: 112-128.
19. Yang Ying, Ao Haiyong, Wang Yugang, et al. Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone research, 2016, 4: 16027.
20. Gnavi S, Fornasari B E, Tonda-Turo C, et al. In vitro evaluation of gelatin and chitosan electrospun fibres as an artificial guide in peripheral nerve repair: a comparative study. J Tissue Eng Regen Med, 2018, 12(2): e679-e694.
21. He Bin, Wu Fei, Fan Li, et al. Carboxymethylated chitosan protects Schwann cells against hydrogen peroxide-induced apoptosis by inhibiting oxidative stress and mitochondria dependent pathway. Eur J Pharmacol, 2018, 825: 48-56.
22. Gu Jianhui, Hu Wen, Deng Aidong, et al. Surgical repair of a 30 mm long human median nerve defect in the distal forearm by implantation of a chitosan-PGA nerve guidance conduit. J Tissue Eng Regen Med, 2012, 6(2): 163-168.
23. Hu Nan, Wu Hong, Xue Chengbin, et al. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials, 2013, 34(1): 100-111.
24. Yang Zhaoyang, Zhang Aifeng, Duan Hongmei, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci U S A, 2015, 112(43): 13354-13359.
25. AO Qiang, Fung C K, Tsui A Y, et al. The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials, 2011, 32(3): 787-796.
26. Muheremu A, Chen L, Wang X, et al. Chitosan nerve conduits seeded with autologous bone marrow mononuclear cells for 30 mm goat peroneal nerve defect. Sci Rep, 2017, 7: 44002.
27. Lopes M, Abrahim B, Veiga F, et al. Preparation methods and applications behind alginate-based particles. Expert Opin Drug Deliv, 2017, 14(6): 769-782.
28. He Xiaoheng, Wang Wei, Liu Yingmei, et al. Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection. ACS Appl Mater Interfaces, 2015, 7(31): 17471-17481.
29. Mei Li, He Fan, Zhou Rongqing, et al. Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria. ACS Appl Mater Interfaces, 2014, 6(8): 5962-5970.
30. Wu Fang, Wang Wei, Liu Li, et al. Monodisperse hybrid microcapsules with an ultrathin shell of submicron thickness for rapid enzyme reactions. J Mater Chem B, 2015, 3(5): 796-803.
31. Marchioli G, Luca A D, de Koning E, et al. Hybrid polycaprolactone/alginate scaffolds functionalized with VEGF to promote de Novo vessel formation for the transplantation of islets of langerhans. Adv Healthc Mater, 2016, 5(13): 1606-1616.
32. Bai Yan, Bai Lijuan, Zhou Jing, et al. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cell Immunol, 2018, 323: 19-32.
33. Saltz A, Kandalam U. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review. J Biomed Mater Res A, 2016, 104(5): 1276-1284.
34. Bayer E A, Jordan J, Roy A, et al. Programmed platelet-derived growth factor-BB and bone morphogenetic protein-2 delivery from a hybrid calcium phosphate/alginate scaffold. Tissue Eng Part A, 2017, 23(23/24): 1382-1393.
35. Bendtsen S T, Quinnell S P, Wei Mei. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A, 2017, 105(5): 1457-1468.
36. Lee H P, Gu L, Mooney D J, et al. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat Mater, 2017, 16: 1243.
37. Mao A S, Shin J W, Utech S, et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat Mater, 2016, 16: 236.
38. Leor J, Tuvia S, Guetta V, et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J Am Coll Cardiol, 2009, 54(11): 1014-1023.
39. Yu J, Gu Yiping, Du K T, et al. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials, 2009, 30(5): 751-756.
40. Smith T T, Moffett H F, Stephan S B, et al. , Biopolymers co-delivering engineered T cells and sting agonists can eliminate heterogeneous tumors. J Clin Invest, 2017, 127(6): 2176-2191.
41. Stephan S B, Taber A M, Jileaeva I, et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol, 2015, 33(1): 97-101.
42. Hori Y, Winans A M, Huang C C, et al. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials, 2008, 29(27): 3671-3682.