生物医学工程学杂志

生物医学工程学杂志

经颅磁刺激同步干预的头皮脑电信号伪迹离线去除方法综述

查看全文

经颅磁刺激(TMS)同步脑电图(EEG)技术(TMS-EEG)已成为脑科学研究的一项重要工具,但两者在同步应用时会在 EEG 信号中形成复杂伪迹,如何去除这些伪迹一直是困扰研究者们的问题。本文归纳了 TMS 干预所造成的 EEG 信号伪迹的类型,并简单介绍了在线处理方法,重点总结了针对不同伪迹的特点可以采用的离线伪迹去除或最小化方法,主要包括减法、主成分分析、独立成分分析等。已有的文献研究表明,现有方法可以较好地处理大部分伪迹,但是对于大伪迹的去噪效果仍有待提高。本文系统总结了近年来 TMS-EEG 研究中关于伪迹去除问题的有效处理方法,期望对于 TMS-EEG 同步研究人员在选择伪迹去除的方法上有一定的指导意义。

Transcranial magnetic stimulation (TMS) combined with electroencephalography(EEG) has become an important tool in brain research. However, it is difficult to remove the large artifacts in EEG signals caused by the online TMS intervention. In this paper, we summed up various types of artifacts. After introducing a variety of online methods, the paper emphasized on offline approaches, such as subtraction, principal component analysis and independent component analysis, which can remove or minimize TMS-induced artifacts according to their different characteristics. Although these approaches can deal with most of the artifacts induced by TMS, the removal of large artifacts still needs to be improved. This paper systematically summarizes the effective methods for artifacts removal in TMS-EEG studies. It is a good reference for TMS-EEG researchers while choosing the suitable artifacts removal methods.

关键词: 经颅磁刺激; 脑电图; 伪迹去除

Key words: transcranial magnetic stimulation; electroencephalogram; artifacts removing

引用本文: 银珊, 李颖洁. 经颅磁刺激同步干预的头皮脑电信号伪迹离线去除方法综述. 生物医学工程学杂志, 2019, 36(1): 146-150. doi: 10.7507/1001-5515.201802011 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Farzan F, Vernet M, Shafi M M, et al. Characterizing and modulating brain circuitry through transcranial magnetic stimulation combined with electroencephalography. Front Neural Circuits, 2016, 10: 73.
2. Bergmann T O, Karabanov A, Hartwigsen G A, et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage, 2016, 140(8): 4-19.
3. Ilmoniemi R J, Hernandezpavon J C, Makela N N, et al. Dealing with artifacts in TMS-evoked EEG//37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan: IEEE, 2015: 230.
4. Ives J R, Rotenberg A, Poma R, et al. Electroencephalographic recording during transcranial magnetic stimulation in humans and animals. Clinical Neurophysiology, 2006, 117(8): 1870-1875.
5. Mutanen T, Maki H, Ilmoniemi R J. The effect of stimulus parameters on TMS-EEG muscle artifacts. Brain Stimul, 2013, 6(3): 371-376.
6. Ter Braack E M. de Vos C C, van Putten M J M J A M Masking the auditory evoked potential in TMS-EEG: a comparison of various methods. Brain Topogr, 2015, 28(3): 520-528.
7. Rogasch N C, Fitzgerald P B. Assessing cortical network properties using TMS-EEG. Hum Brain Mapp, 2013, 34(7): 1652-1669.
8. Rogasch N C, Sullivan C, Thomson R H, et al. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: a review and introduction to the open-source TESA software. Neuroimage, 2017, 147: 934-951.
9. Tanner D, Morgan-Short K, Luck S J. How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology, 2015, 52(8): 997-1009.
10. Ruddy K L, Woolley D G, Mantini D, et al. Improving the quality of combined EEG-TMS neural recordings: introducing the coil spacer. J Neurosci Methods, 2018, 294: 34-39.
11. Petrichella S, Johnson N, He B. The influence of corticospinal activity on TMS-evoked activity and connectivity in healthy subjects: a TMS-EEG study. PLoS One, 2017, 12(4): e0174879.
12. Chung S W, Lewis B P, Rogasch N C, et al. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: a TMS-EEG study. Clinical Neurophysiology, 2017, 128(7): 1117-1126.
13. Reichenbach A, Whittingstall K, Thielscher A. Effects of transcranial magnetic stimulation on visual evoked potentials in a visual suppression task. Neuroimage, 2011, 54(2): 1375-1384.
14. Rogasch N C, Thomson R H, Farzan F A, et al. Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties. Neuroimage, 2014, 101: 425-439.
15. Thut G, Northoff G, Ives J R, et al. Effects of single-pulse transcranial magnetic stimulation (TMS) on functional brain activity: a combined event-related TMS and evoked potential study. Clin Neurophysiol, 2003, 114(11): 2071-2080.
16. Verhagen L, Dijkerman H C, Medendorp W . Cortical dynamics of sensorimotor integration during grasp planning. Journal of Neuroscience, 2012, 32(13): 4508-4519.
17. Rose N S, Larocque J J, Riggall A C, et al. Reactivation of latent working memories with transcranial magnetic stimulation. Science, 2016, 354(6316): 1136-1139.
18. Ter Braack E M. de Jonge Benjamin, van Putten M J A M Reduction of TMS induced artifacts in EEG using principal component analysis. IEEE Trans Neural Syst Rehabil Eng Publ, 2013, 21(3): 376-382.
19. Mutanen T P, Kukkonen M, Nieminen J O, et al. Recovering TMS-evoked EEG responses masked by muscle artifacts. Neuroimage, 2016, 139: 157-166.
20. Korhonen R J, Hernandez-Pavon J C, Metsomaa J, et al. Removal of large muscle artifacts from transcranial magnetic stimulation-evoked EEG by independent component analysis. Med Biol Eng Comput, 2011, 49(4): 397-407.
21. Chaumon M, Bishop D V, Busch N A. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J Neurosci Methods, 2015, 250(SI): 47-63.
22. Winkler I, Debener S, Mueller K . On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP//2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015: 4101-4105.
23. Groppe D M, Makeig S, Kutas M. Identifying reliable Independent components via split-half comparisons. Neuroimage, 2009, 45(4): 1199-1211.
24. Fuertes J J, Travieso C M, Álvarez A, et al. Reducing artifacts in TMS-evoked EEG. Berlin Heidelberg: Springer, 2010: 302-310.
25. Maki H, Ilmoniemi R J. Projecting out muscle artifacts from TMS-evoked EEG. Neuroimage, 2011, 54(4): 2706-2710.
26. Lyzhko E, Hamid L, Makhortykh S, et al. Comparison of three ICA algorithms for ocular artifact removal from TMS-EEG recordings//2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015: 1926-1929.