生物医学工程学杂志

生物医学工程学杂志

一种用于鲤鱼机器人的光刺激装置及光控实验方法

查看全文

为解决水生动物机器人因植入脑电极而产生的脑组织损伤、出血、感染和水肿等问题,本文提出了一种用于鲤鱼机器人的光刺激装置及光控实验方法。该装置是根据鲤鱼颅骨形状用万能板切割而成“王”字型结构,可为光刺激源提供 A、B、C 三组搭载桥平台,每组搭载桥两端各焊接一个跳线板,将发光二极管(LED)作为光刺激源插入跳线板中,将跳线板所有负极通过导线连接到控制台,LED 灯根据波长需要可以更换,还可选择多种组合光刺激方式。将该装置搭载于鲤鱼头部,将鲤鱼机器人置于水迷宫中,观察应用光控方法在暗光下控制鲤鱼机器人(n = 10)前进及转向等运动。结果显示,三组红光光控实验成功率在 53%~87%,三组蓝光光控实验成功率在 50%~80%。研究表明该装置与方法具有可行性。

In order to solve the problems that the injury, hemorrhage, infection and edema of the brain tissue caused by brain electrodes implantation for aquatic animal robots, a light stimulation device and an optical control experiment method for carp robots are proposed in this paper. According to the shape of the carp skull, the device is a structure of Chinese character " 王” cut by a printed circuit board which can provide three groups of A, B and C bridge platforms for the light stimulation source. The two ends of a bridge in every group are welded with a jumper board, and the light emitting diodes (LED) are inserted into the jumper boards as the light stimulation source, and all negative poles of the jumper boards are connected to the console by the wire. A LED light can be replaced by another LED light according to the need of the wavelength of the LED light, and various combinations of the light stimulation modes can be also selected. This device was mounted on the carp robot’s head, the carp robot was placed in a water maze, and the optical control experiment method was observed to control the forward movement and steering movement of the carp robots (n = 10) under the dark light condition. The results showed that the success rates of the three groups of red light control experiments were 53%–87%, and the success rates of the three groups of blue light control experiments were 50%–80%. This study shows that the apparatus and the method are feasible.

关键词: 水生动物机器人; 鲤鱼机器人; 光刺激装置; 光控实验方法; 生物控制

Key words: aquatic animal robot; carp robot; light stimulus device; optical control experiment method; biological control

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Banasik M, Komura H, Shimoyama M, et al. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl) transferase. J Biol Chem, 1992, 267(3): 1569-1575.
2. Sanchez C J, Chiu C W, Zhou Yan, et al. Locomotion control of hybrid cockroach robots. J R Soc Interface, 2015, 12(15): 20141363.
3. Talwar S K, Xu Shaohua, Hawley E S, et al. Rat navigation guided by remote control. Nature, 2002, 417(6884): 37-38.
4. Talwar S K, Xu Shaohua, Hawley E S, et al. Direct brain stimulation enables training of complex behaviors in freely roaming aninals// Engineering in Medicine and Biology, 2002. Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society. Houston: IEEE, 2002, 3: 2076-2077.
5. Xu Shaohua, Talwar S K, Hawley E S, et al. A multi-channel telemetry system for brain microstimulation in freely roaming animals. J Neurosci Methods, 2004, 133(1/2): 57-63.
6. Kajiura S M, Fitzgerald T P. Response of juvenile scalloped hammerhead sharks to electric stimuli. Zoology (Jena), 2009, 112(4): 241-250.
7. 苏学成, 槐瑞托, 杨俊卿, 等. 控制动物机器人运动行为的脑机制和控制方法. 中国科学:信息科学, 2012, 42(9): 1130-1146.
8. 张韶岷, 王鹏, 江君, 等. 大鼠遥控导航及其行为训练系统的研究. 中国生物医学工程学报, 2007, 26(6): 830-836.
9. 王文波, 戴振东, 郭策, 等. 电刺激大壁虎(Gekko gecko)中脑诱导转向运动的研究. 自然科学进展, 2008, 18(9): 979-986.
10. 武云慧. 水生动物机器人脑控制技术的研究. 秦皇岛, 2010.
11. 刘颖杰. 家兔动物机器人行为控制技术的研究. 秦皇岛: 燕山大学, 2013.
12. 岳森. 基于μLED的光遗传学可植入光极研究. 北京: 中国科学院大学, 2015.
13. Boyden E S, Zhang Feng, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 2005, 8(9): 1263-1268.
14. Gradinaru V, Thompson K R, ZHANG Feng, et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci, 2007, 27(52): 14231-14238.
15. 侯天德, 何福元, 程防. 光刺激峡蝶和菜粉蝶复眼引起的视神经节层电生理反应. 兰州大学学报: 自然科学版, 2005, 41(3): 45-47.
16. Poher V, Grossman N, Kennedy G T, et al. Micro-LED arrays: a tool for two-dimensional neuron stimulation. J Phys D Appl Phys, 2008, 41(9): 1459-1469.
17. 皮喜田, 徐林, 周升山, 等. 无创伤老鼠生物机器人的运动控制. 机器人, 2011, 33(1): 71-76.
18. Gehrke P. Influence of light intensity and wavelength on phototactic behaviour of larval Silver perch Bidyanus bidyanus and golden perch Macquana ambigua and the effectiveness of light traps. J Fish Biol, 2010, 44(5): 741-751.
19. Salmon M, Witherington B E. Artificial lighting and seafinding by loggerhead hatchlings: Evidence for lunar modulation. Copeia, 1995, (4): 931.
20. 彭勇, 苏晨旭, 郭聪珊, 等. 一种光刺激搭载装置: 201420696022.1. 2014-11-20.
21. Kobayashi N, Yoshida M, Matsumoto N, et al. Artificial control of swimming in goldfish by brain stimulation: confirmation of the midbrain nuclei as the swimming center. Neurosci Lett, 2009, 452(1): 42-46.
22. 周显青, 牛翠娟, 李庆芬. 光照对水生动物行为的影响. 动物学杂志, 1999, 34(2): 45-48.
23. Blaxter J H S. Visual thresholds and spectral sensitivity of herring larvae. J Exp Biol, 1968, 48(1): 39-53.
24. 袁明军, 岳森, 张云鹏, 等. 无线光刺激与神经传感系统. 传感器与微系统, 2016, 35(6): 62-65.