生物医学工程学杂志

生物医学工程学杂志

计算机断层扫描纹理分析在预测联合靶向化疗后的结直肠癌肝转移灶治疗反应的价值研究

查看全文

本研究旨在探讨治疗前计算机断层扫描(CT)纹理分析在预测联合靶向化疗后结直肠癌肝转移治疗疗效的价值。回顾性分析 2011 年 3 月–2017 年 10 月在四川大学华西医院接受西妥昔单抗治疗且有完整资料的结直肠癌肝转移患者 82 例。参照 RECIST1.1 标准,将患者分为治疗有反应组和治疗无反应组。采用 CT 纹理分析软件,在门脉期对标记病灶进行 3D 纹理分析。对比治疗有反应组和治疗无反应组间的纹理参数差异,并对差异有统计学意义的参数行受试者工作曲线分析,得出其诊断效能参数。结果显示,治疗前病灶熵(Entropy)、能量(Energy)、方差(Variance)、标准差(std. Deviation)、95th 分位数(Quantile95)以及熵和(sumEntropy)在治疗有反应组(n = 44)和无反应组之间(n = 38)有显著差异(P < 0.05);较高的熵、熵和、方差、标准差以及较低的能量似乎预示着较好的治疗反应。当熵和 > 0.867 时,能够取得较好的诊断效能,敏感度和特异度分别为 60.5%、79.5%。因此,CT 纹理分析在预测联合靶向化疗的结直肠癌肝转移患者的治疗反应方面具有一定的价值,可作为潜在的疗效预测的生物学标志。

This study aims to investigate the value of pre-treatment computed tomography (CT) texture analysis in predicting therapeutic response of liver metastasis from colorectal cancer after combined targeting chemotherapy. A total of 82 patients with colorectal cancer liver metastases who underwent chemotherapy combined with targeted therapy (cetuximab) between March 2011 and October 2017 comprised this retrospective study population. According to the RECIST1.1, the best curative effect evaluation of patients was recorded. Complete response (CR) and partial response (PR) were assigned to the response group, and the stable disease (SD) and progressive disease (PD) were assigned to the non-response group. The CT texture analysis was based on the Omini-Kinetics software, and the three-dimensional (3D) texture analysis was performed on the marked lesion on portal phase. The differences of texture parameters between the response group and the non-response group were compared. The receiver operating characteristic (ROC) curves were depicted on the parameters which with statistically difference, to characterize value in predicting the response to target-combined chemotherapy. The differences of Entropy, Energy, Variance, Std. Deviation, Quantile95 and sumEntropy between the two groups in pre-treatment lesions were significant (P < 0.05). And lesions with higher entropy, lower energy, higher variance, higher standard deviation, higher sum entropy seemed to indicate a better therapeutic response. When sum entropy > 0.867, good diagnostic efficiency could be obtained, with sensitivity of 60.5% and specificity of 79.5%, respectively. In conclusion, texture parameters derived from baseline CT images of colorectal cancer liver metastasis have the potential value acting as imaging biomarkers in predicting tumor response to combined target chemotherapy.

关键词: 计算机断层扫描; 纹理分析; 结直肠癌肝转移; 联合靶向化疗; 治疗反应

Key words: computed tomography; texture analysis; colorectal cancer liver metastasis; target-combined chemotherapy; therapeutic response

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Chen Wanqing, Zheng Rongshou, Baade P D, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
2. Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018. CA Cancer J Clin, 2018, 68(1): 7-30.
3. Shah S A, Bromberg R, Coates A, et al. Survival after liver resection for metastatic colorectal carcinoma in a large population. J Am Coll Surg, 2007, 205(5): 676-683.
4. Simpson A L, Doussot A, Creasy J M, et al. Computed tomography image texture: a noninvasive prognostic marker of hepatic recurrence after hepatectomy for metastatic colorectal cancer. Ann Surg Oncol, 2017, 24(9): 2482-2490.
5. 郭桂芳, 夏良平, 张蓓, 等. 西妥昔单抗联合化疗对 53 例晚期结直肠癌的疗效. 癌症, 2009, 28(12): 1317-1323.
6. Humblet Y, Peeters M, Gelderblom H, et al. Cetuximab dose-escalation in patients (pts) with metastatic colorectal cancer (mCRC) with no or slight skin reactions on standard treatment: pharmacokinetic (PK), pharmacodynamic (PD) and efficacy data from the EVEREST study. EJC Supplements, 2007, 5(4): 240.
7. Andreyev H J N, Norman A R, Cunningham D, et al. Kirsten ras mutations in patients with colorectal cancer: the 'RASCAL II' study. Br J Cancer, 2001, 85(5): 692-696.
8. 郭桂芳, 夏良平, 徐瑞华, 等. 西妥昔单抗联合化疗治疗晚期结直肠癌的生存分析及 KRAS 对疗效的影响. 中山大学学报:医学科学版, 2011, 32(5): 637-643.
9. Castellano G, Bonilha L, Li Lm, et al. Texture analysis of medical images. Clin Radiol, 2004, 59(12): 1061-1069.
10. Eisenhauer E A, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer, 2009, 45(2): 228-247.
11. Wagner F, Hakami Y A, Warnock G, et al. Comparison of contrast-enhanced CT and [18F] FDG PET/CT analysis using kurtosis and skewness in patients with primary colorectal cancer. Mol Imaging Biol, 2017, 19(5): 795-803.
12. Kim J H, Ko E S, Lim Y, et al. Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes. Radiology, 2017, 282(3): 665-675.
13. Ganeshan B, Panayiotou E, Burnand K, et al. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol, 2012, 22(4): 796-802.
14. Raman S P, Chen Yifei, Schroeder J L, et al. CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Acad Radiol, 2014, 21(12): 1587-1596.
15. Smith A D, Gray M R, del Campo S M, et al. Predicting overall survival in patients with metastatic melanoma on antiangiogenic therapy and RECIST stable disease on initial posttherapy images using CT texture analysis. Am J Roentgenol, 2015, 205(3): W283-W293.
16. Lubner M G, Stabo N, Abel E J, et al. CT textural analysis of large primary renal cell carcinomas: pretreatment tumor heterogeneity correlates with histologic findings and clinical outcomes. Am J Roentgenol, 2016, 207(1): 96-105.
17. Yu H, Scalera J, Khalid M, et al. Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol, 2017, 42(10): 2470-2478.
18. 于鲁, 夏翃, 刘卫芳. 基于磁共振图像海马三维纹理特征的阿尔茨海默病及健康对照的分类研究. 生物医学工程学杂志, 2016, 33(6): 1090-1094.
19. Ahn S J, Kim J H, Park S J, et al. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol, 2016, 85(10): 1867-1874.
20. Chaddad A, Tanougast C. Texture analysis of abnormal cell images for predicting the continuum of colorectal cancer. Anal Cell Pathol (Amst), 2017: 8428102.
21. Beckers R C J, Lambregts D M J, Schnerr R S, et al. Whole liver CT texture analysis to predict the development of colorectal liver metastases–A multicentre study. Eur J Radiol, 2017, 92: 64-71.
22. Lee S J, Zea R, Kim D H, et al. CT texture features of liver parenchyma for predicting development of metastatic disease and overall survival in patients with colorectal cancer. Eur Radiol, 2018, 28(4): 1520-1528.
23. Cui C, Cai H, Liu L, et al. Quantitative analysis and prediction of regional lymph node status in rectal cancer based on computed tomography imaging. Eur Radiol, 2011, 21(11): 2318-2325.
24. Grove O, Berglund A E, Schabath M B, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One, 2015, 10(3): e0118261.
25. Yang Xiangyu, Knopp M V. Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol, 2011: 732848.
26. Mayerhoefer M E, Schima W, Trattnig S, et al. Texture-based classification of focal liver lesions on MRI at 3.0 Tesla: a feasibility study in cysts and hemangiomas. J Magn Reson Imaging, 2010, 32(2): 352-359.
27. Ganeshan B, Miles K A. Quantifying tumour heterogeneity with CT. Cancer Imaging, 2013, 13(1): 140-149.
28. Ng F, Ganeshan B, Kozarski R, et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology, 2013, 266(1): 177-184.
29. Lubner M G, Stabo N, Lubner S J, et al. CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging, 2015, 40(7): 2331-2337.
30. Bezy-Wendling J, Kretowski M, Rolland Y, et al. Toward a better understanding of texture in vascular CT scan simulated images. IEEE Trans Biomed Eng, 2001, 48(1): 120-124.
31. Goh V, Ganeshan B, Nathan P, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology, 2011, 261(1): 165-171.
32. Chen S, Zhu Y, Liu Z, et al. Texture analysis of baseline multiphasic hepatic computed tomography images for the prognosis of single hepatocellular carcinoma after hepatectomy: A retrospective pilot study. Eur J Radiol, 2017, 90: 198-204.