生物医学工程学杂志

生物医学工程学杂志

肾透明细胞癌中 lncRNA 和 miRNA 差异表达及相关 ceRNA 调控网络的分析研究

查看全文

本文旨在通过大样本基因组学分析技术,评估 lncRNA、miRNA、mRNA 及 ceRNA 在肾透明细胞癌中的差异表达情况及其预后价值。利用 R 软件对 TCGA 数据库中肾透明细胞癌 RNA 和 miRNA 数据进行基因差异表达分析和生存分析,并通过 cytoscape 软件得到差异表达的 lncRNA-miRNA-mRNA 之间的 ceRNA 调控关系网。结果发现共有 1 570 个 lncRNA、54 个 miRNA 和 17 个 mRNA 在肾透明细胞癌组织中存在异常表达,且其表达水平以上调为主(错误发现率 < 0.01;对数差异表达倍数变化绝对值 > 2)。ceRNA 调控网显示共 89 个差异表达的 lncRNA 和 9 个差异表达的 miRNA 之间存在相互作用关系,生存分析共鉴定出 COL18A1-AS1、TCL6、LINC00475、UCA1、WT1-AS、HOTTIP、PVT1 等 38 个有预后价值的 lncRNA 和 2 个有预后价值的 miRNA(miR-21 和 miR-155)(P < 0.05)。本研究将为肾透明细胞癌靶向治疗与预后评估提供新的理论依据。

To evaluate the differential expression profiles of the lncRNAs, miRNAs, mRNAs and ceRNAs, and their implication in the prognosis in clear cell renal cell carcinoma (CCRCC), the large sample genomics analysis technologies were used in this study. The RNA and miRNA sequencing data of CCRCC were obtained from The Cancer Genome Atlas (TCGA) database, and R software was used for gene expression analysis and survival analysis. Cytoscape software was used to construct the ceRNA network. The results showed that a total of 1 570 lncRNAs, 54 miRNAs, and 17 mRNAs were differentially expressed in CCRCC, and most of their expression levels were up-regulated (false discovery rate < 0.01 and absolute log fold change > 2). The ceRNA regulatory network showed the interaction between 89 differentially expressed lncRNAs and 9 differentially expressed miRNAs. Further survival analysis revealed that 38 lncRNAs (including COL18A1-AS1, TCL6, LINC00475, UCA1, WT1-AS, HOTTIP, PVT1, etc.) and 2 miRNAs (including miR-21 and miR-155) were correlated with the overall survival time of CCRCC (P < 0.05). Together, this study provided us several new evidences for the targeted therapy and prognosis assessment of CCRCC.

关键词: 肾透明细胞癌; 肿瘤基因组图谱计划; 长链非编码 RNA; 竞争性内源性 RNA; 微小 RNA

Key words: clear cell renal cell carcinoma; The Cancer Genome Atlas; long noncoding RNA; competing endogenous RNA; microRNA

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Moch H. An overview of renal cell cancer: pathology and genetics. Semin Cancer Biol, 2013, 23(1): 3-9.
2. Wolff I, May M, Hoschke B, et al. Do we need new high-risk criteria for surgically treated renal cancer patients to improve the outcome of future clinical trials in the adjuvant setting? Results of a comprehensive analysis based on the multicenter CORONA database. Eur J Surg Oncol, 2016, 42(5): 744-750.
3. Motzer R J, Escudier B, Mcdermott D F, et al. Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med, 2015, 373(19): 1803-1813.
4. Motzer R J, Hutson T E, McCann L, et al. Overall survival in renal-cell carcinoma with pazopanib versus sunitinib. N Engl J Med, 2014, 370(18): 1769-1770.
5. Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543): 858-862.
6. Prensner J R, Chinnaiyan A M. The emergence of lncRNAs in cancer biology. Cancer Discov, 2011, 1(5): 391-407.
7. Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2): 358-369.
8. Zhang Jian, Fan Dahua, Jian Zhixiang, et al. Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma. PLoS One, 2015, 10(10): e0141042.
9. Xia Tian, Liao Qi, Jiang Xiaoming, et al. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep, 2014, 4: 6088.
10. Luan Tian, Zhang Ximei, Wang Shuyuan, et al. Long non-coding RNA MIAT promotes breast cancer progression and functions as ceRNA to regulate DUSP7 expression by sponging miR-155-5p. Oncotarget, 2017, 8(44): 76153-76164.
11. Zhou Meng, Diao Zhiyong, Yue Xiaolong, et al. Construction and analysis of dysregulated lncRNA-associated ceRNA network identified novel lncRNA biomarkers for early diagnosis of human pancreatic cancer. Oncotarget, 2016, 7(35): 56383-56394.
12. Huang Chuiguo, Yuan Naijun, Wu Liying, et al. An integrated analysis for long noncoding RNAs and microRNAs with the mediated competing endogenous RNA network in papillary renal cell carcinoma. Onco Targets Ther, 2017, 10: 4037-4050.
13. Zhou W, Ye X L, Xu J, et al. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal, 2017, 10: 483.
14. Hirata H, Hinoda Y, Shahryari V, et al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res, 2015, 75(7): 1322-1331.
15. He H T, Xu M, Kuang Y, et al. Biomarker and competing endogenous RNA potential of tumor-specific long noncoding RNA in chromophobe renal cell carcinoma. Onco Targets Ther, 2016, 9: 6399-6406.
16. Feng Ling, Wang Ru, Lian Meng, et al. Integrated analysis of long noncoding RNA and mRNA expression profile in advanced laryngeal squamous cell carcinoma. PLoS One, 2016, 11(12): e0169232.
17. Lv Long, Chen G, Zhou Jianping, et al. WT1-AS promotes cell apoptosis in hepatocellular carcinoma through down-regulating of WT1. J Exp Clin Cancer Res, 2015, 34: 119.
18. Su Hengchuan, Sun Tiantian, Wang Hongkai, et al. Decreased TCL6 expression is associated with poor prognosis in patients with clear cell renal cell carcinoma. Oncotarget, 2017, 8(4): 5789-5799.
19. Bao Xu, Duan Junyao, Yan Yongji, et al. Upregulation of long noncoding RNA PVT1 predicts unfavorable prognosis in patients with clear cell renal cell carcinoma. Cancer Biomark, 2017, 21(1): 55-63.
20. Yang Tao, Zhou Hui, Liu Peijun, et al. lncRNA PVT1 and its splicing variant function as competing endogenous RNA to regulate clear cell renal cell carcinoma progression. Oncotarget, 2017, 8(49): 85353-85367.
21. Yang Yali, Ren Mingxin, Song Chao, et al. LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget, 2017, 8(48): 84123-84139.
22. Lan Tian, Ma Weijie, Hong Zhenfei, et al. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a/b-5p in hepatocellular carcinoma. J Exp Clin Cancer Res, 2017, 36(1): 11.
23. Wang J Z, Xu C L, Wu H, et al. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells. Braz J Med Biol Res, 2017, 50(3): e6079.
24. Zhang Hanyun, Lu Wenjie. LncRNA SNHG12 regulates gastric cancer progression by acting as a molecular sponge of miR?320. Mol Med Rep, 2018, 17(2): 2743-2749.
25. Lai I L, Yang C A, Lin P C, et al. Long noncoding RNA MIAT promotes non-small cell lung cancer proliferation and metastasis through MMP9 activation. Oncotarget, 2017, 8(58): 98148-98162.
26. Wang Li, Chen Zhenhong, An Li, et al. Analysis of long non-coding RNA expression profiles in non-small cell lung cancer. Cell Physiol Biochem, 2016, 38(6): 2389-2400.
27. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 2013, 499(7456): 43-49.
28. Ahrend H, Kaul A, Ziegler S, et al. MicroRNA-1 and MicroRNA-21 individually regulate cellular growth of non-malignant and malignant renal cells. In Vivo, 2017, 31(4): 625-630.
29. Fritz H K, Lindgren D, Ljungberg B A, et al. The miR(21/10b) ratio as a prognostic marker in clear cell renal cell carcinoma. Eur J Cancer, 2014, 50(10): 1758-1765.
30. Zhang Guangjun, Xiao Huaxu, Tian Hongpeng, et al. Upregulation of microRNA-155 promotes the migration and invasion of colorectal cancer cells through the regulation of claudin-1 expression. Int J Mol Med, 2013, 31(6): 1375-1380.
31. Yan Xinlong, Jia Yali, Chen Lin, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology, 2013, 57(6): 2274-2286.
32. Shi Da, Qu Qinghua, Chang Qimeng, et al. A five-long non-coding RNA signature to improve prognosis prediction of clear cell renal cell carcinoma. Oncotarget, 2017, 8(35): 58699-58708.
33. Yang Feiyan, Wang Yan, Wu J G, et al. Analysis of long non-coding RNA expression profiles in clear cell renal cell carcinoma. Oncol Lett, 2017, 14(3): 2757-2764.
34. Liu G, Ye Z, Zhao X, et al. SP1-induced up-regulation of lncRNA SNHG14 as a ceRNA promotes migration and invasion of clear cell renal cell carcinoma by regulating N-WASP. Am J Cancer Res, 2017, 7(12): 2515-2525.
35. Hong Quan, Li Ou, Zheng Wei, et al. LncRNA HOTAIR regulates HIF-1 alpha/AXL signaling through inhibition of miR-217 in renal cell carcinoma. Cell Death Dis, 2017, 8(5): e2772.
36. Cao Yunjie, Xu Renfang, Xu Xianlin, et al. Downregulation of lncRNA CASC2 by microRNA-21 increases the proliferation and migration of renal cell carcinoma cells. Mol Med Rep, 2016, 14(1): 1019-1025.