生物医学工程学杂志

生物医学工程学杂志

基于阿尔茨海默病脑结构网络的模式识别分析

查看全文

阿尔茨海默病是最普遍的一种老年痴呆症,目前尚无有效治疗手段。通过早期诊断,经确诊后进行临床前的干预治疗是目前认为最有效的手段,但相应的早期诊断方法依然有待研究。神经影像为大脑功能结构测量提供了便利,其中结构网络反映了大脑不同皮层区域之间的纤维束结构连接模式,是大脑正常生理活动的基础。本文基于大脑结构网络,结合模式识别方法,提出了一种基于大脑结构网络的阿尔茨海默病病变和灰质病变脑区自动诊断方法。该方法通过模式识别中的特征筛选,可得到阿尔茨海默病患者大脑皮层异常区域。本研究从网络的节点和连接两个方面分析了阿尔茨海默病大脑结构异常的空间分布模式,期望通过本文研究可为今后阿尔茨海默病病理机制的研究提供更新的线索。

Alzheimer’ s disease is the most common kind of dementia without effective treatment. Via early diagnosis, early intervention after diagnosis is the most effective way to handle this disease. However, the early diagnosis method remains to be studied. Neuroimaging data can provide a convenient measurement for the brain function and structure. Brain structure network is a good reflection of the fiber structural connectivity patterns between different brain cortical regions, which is the basis of brain’s normal psychology function. In the paper, a brain structure network based on pattern recognition analysis was provided to realize an automatic diagnosis research of Alzheimer’s disease and gray matter based on structure information. With the feature selection in pattern recognition, this method can provide the abnormal regions of brain structural network. The research in this paper analyzed the patterns of abnormal structural network in Alzheimer’s disease from the aspects of connectivity and node, which was expected to provide updated information for the research about the pathological mechanism of Alzheimer’s disease.

关键词: 阿尔茨海默病; 结构网络; 模式识别; 支持向量机

Key words: Alzheimer’s disease; structure network; pattern recognition; support vector machine

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Johansenberg H, Behrens T. Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Second Edition. United State of America , Elsevier science publishers, 2013: 1-614.
2. Mcmillan C T, Avants B B, Cook P, et al. The power of neuroimaging biomarkers for screening frontotemporal dementia. Hum Brain Mapp, 2014, 35(9): 4827-4840.
3. Xu Lele, Wu Xia, Chen Kewei, et al. Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment. Comput Methods Programs Biomed, 2015, 122(2): 182-190.
4. O'Dwyer L, Lamberton F, Bokde A L, et al. Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One, 2012, 7(2): e32441.
5. Roher A E, Weiss N, Kokjohn T A, et al. Increased Aβ peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer's disease. Biochemistry, 2002, 41(37): 11080-11090.
6. Zhang Xiaoyuan, Qiu Daoyin, Chen F. Support vector machine with parameter optimization by a novel hybrid method and its application to fault diagnosis. Neurocomputing, 2015, 149(B): 641-651.
7. Prasad G, Joshi S H, Nir T M, et al. Brain connectivity and novel network measures for Alzheimer's disease classification. Neurobiol Aging, 2015, 36(1): S121-S131.
8. Chyzhyk D, Savio A, Grana M. Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI. Neurocomputing, 2014, 128: 73-80.
9. Moradi E, Pepe A, Gaser C, et al. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Neuroimage, 2015, 104: 398-412.
10. Li Muwei, Qin Yuanyuan, Gao Fei, et al. Discriminative analysis of multivariate features from structural MRI and diffusion tensor images. Magn Reson Imaging, 2014, 32(8): 1043-1051.
11. Dyrba M, Ewers M, Wegrzyn M, et al. Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data. PLoS One, 2013, 8(5): e64925.
12. Lacalle-Aurioles M, Navas-Sánchez F, Alemán-Gómez Y, et al. The disconnection hypothesis in Alzheimer's disease studied through multimodal magnetic resonance imaging: structural, perfusion, and diffusion tensor imaging. Journal of Alzheimer's Disease, 2016, 50(4): 1051-1064.
13. Dyrba M, Grothe M, Kirste T, et al. Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM. Hum Brain Mapp, 2015, 36(6): 2118-2131.
14. Wang Tao, Shi Feng, Jin Yan, et al. Multilevel deficiency of white matter connectivity networks in Alzheimer's disease: a diffusion MRI study with DTI and HARDI models. Neural Plast, 2016, (2): 2947136.
15. Cui Yue, Wen Wei, Lipnicki D M, et al. Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach. Neuroimage, 2012, 59(2): 1209-1217.
16. Jack C R. Alliance for aging research AD biomarkers work group: structural MRI. Neurobiol Aging, 2011, 32(Suppl 1): S48-S57.
17. Dubois B, Feldman H H, Jacova C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. The Lancet Neurology, 2007, 6(8): 734-746.
18. 员锐娟, 吴水才, 林仲志, 等. 基于大脑结构网络特征的遗忘型轻度认知障碍诊断模型. 中国生物医学工程学报, 2014, 33(5): 564-573.