生物医学工程学杂志

生物医学工程学杂志

不同功能残气量对可吸入颗粒物在人体肺腺泡区沉积影响的实验研究

查看全文

研究可吸入颗粒物在肺腺泡内的沉积规律对于明确肺气肿等常见呼吸系统疾病的诱因和发展,以及优化临床治疗和预防方案具有重要意义。本文建立了能够模拟终末细支气管和肺腺泡颗粒物沉积的体外实验模型,在不同功能残气量模式下研究了不同粒径的可吸入颗粒物在肺腺泡内的沉积率。结果表明,颗粒物直径是影响颗粒物在肺腺泡沉积的重要因素,1 μm 左右的颗粒物沉积率最高。功能残气量增大,颗粒物沉积率显著降低。本文研究结果为肺气肿和尘肺等疾病的靶向吸入治疗提供了数据支撑和优化途径,建立的模型也为研究可吸入颗粒物在肺腺泡内的沉积规律提供了一种可行的体外实验模型。

Research on the deposition of inhalable particles in the alveoli of the lungs is important to the causes, development for common respiratory diseases such as emphysema, and even the optimization of clinical treatment and prevention programs of them. In this paper, an in vitro experimental model was established to simulate the deposition of terminal bronchioles and pulmonary acinus particles. The deposition rate of inhalable particles with different particle sizes in the pulmonary acinus was studied under different functional residual capacity. The results showed that the particle diameter was an important factor affecting the deposition of particles in the lung alveoli. Particles with 1 μm diameter had the highest deposition rate. With the functional residual capacity increasing, particulate deposition rate significantly reduced. The results of this study may provide data support and optimization strategy for target inhalation therapy of respiratory diseases such as emphysema and pneumoconiosis. The established model may also provide a feasible in vitro experimental model for studying the deposition of inhalable particles in the pulmonary alveoli.

关键词: 肺腺泡; 可吸入颗粒物; 沉积; 功能残气量

Key words: pulmonary alveoli; inhalable particle; deposition; functional residual capacity

引用本文: 李蓉, 徐新喜, 乔杨, 赵秀国. 不同功能残气量对可吸入颗粒物在人体肺腺泡区沉积影响的实验研究. 生物医学工程学杂志, 2018, 35(4): 557-563. doi: 10.7507/1001-5515.201711054 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Fernández Tena A, Casan Clarà P. Deposition of inhaled particles in the lungs. Arch Bronconeumol, 2012, 48(7): 240-246.
2. Tsuda A, Henry F S, Butler J P. Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus. J Appl Physiol, 1995, 79(3): 1055-1063.
3. Darquenne C, Harrington L, Prisk G K. Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study. Philos Trans A Math Phys Eng Sci, 2009, 367(1896): 2333-2346.
4. Sznitman J, Heimsch T, Wildhaber J H, et al. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. J Biomech Eng, 2009, 131(3): 031010.
5. Ma Baoshun, Darquenne C. Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions. J Appl Physiol, 2011, 110(5): 1271-1282.
6. 李振振. 肺腺泡内颗粒物的沉积及阻塞影响的数值模拟研究. 西安: 西安建筑科技大学, 2016.
7. Oakes J M, Day S, Weinstein S J, et al. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry. J Biomech Eng, 2010, 132(2): 021008.
8. Berg E J, Weisman J L, Oldham M J, et al. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV). J Biomech, 2010, 43(6): 1039-1047.
9. Fishler R, Mulligan M K, Sznitman J. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows. J Biomech, 2013, 46(16): 2817-2823.
10. International Commissionon Radiological Protection (ICRP). Human respiratory tract model for radiological protection. ICRP Publication 66. Annals of ICRP, 1994, 24(1-3).
11. Haefeli-Bleuer B, Weibel E R. Morphometry of the human pulmonary acinus. Anat Rec, 1988, 220(4): 401-414.
12. Żywczyk Ł, Moskal A. Modeling of the influence of tissue mechanical properties on the process of aerosol particles deposition in a model of human alveolus. J Drug Deliv Sci Tec, 2012, 22(2): 153-159.
13. Sznitman J. Respiratory flows in the pulmonary acinus and insights on the control of alveolar flows// International Conference on Sensors and Control Techniques (ICSC2000). Wuhan: International Society for Optics and Photonics, 2008: 496-499.
14. 王兴华, 周鸣镝, 成红娟. 湿空气热物性参数的计算//中国建筑学会建筑热能动力分会全国区域能源专业委员会年会. 牡丹江: 中国建筑学会建筑热能动力分会, 2013.
15. 丁玉龙, 苍大强, 杨天钧. 稀相气固两相垂直管流内的固相浓度和粘度. 北京科技大学学报, 1994, 16(1): 20-25.
16. Chhabra S, Prasad A K. Flow and particle dispersion in a pulmonary alveolus--part Ⅰ: velocity measurements and convective particle transport. J Biomech Eng, 2010, 132(5): 051009.
17. 黄俊. 可吸入颗粒在肺泡中沉积的数值模拟. 杭州: 浙江大学, 2016.
18. 郭西龙. 颗粒物在人体肺部沉积规律及影响因素研究. 长沙: 中南大学, 2013.
19. 符乃方, 董志超, 李羡筠, 等. 职业性尘肺病治疗方法研究进展. 职业与健康, 2016, 32(24): 3452-3456.