生物医学工程学杂志

生物医学工程学杂志

三维打印技术在皮肤组织修复上的应用

查看全文

三维打印是一种低成本、高效益的生产方法,有助改善皮肤修复材料产业现在成本高昂、利润放缓的趋势,并开发出性能更优秀的产品。常用于皮肤修复材料制备中的三维打印技术有熔融沉积成型技术和三维生物打印技术:其中熔融沉积成型技术具有设备简单轻巧的优点,但材料选择不足;三维生物打印技术可供选择的材料较多,但设备笨重且昂贵。近年对两种技术的研究均集中于材料的开发和应用上。本文详细介绍了熔融沉积成型技术和三维生物打印技术的原理、在伤口敷料和组织工程皮肤生产上的研究进展,以及三维打印在皮肤组织修复上的未来发展,包括容貌修复和仿生组织工程皮肤的研究,并对三维打印技术应用在皮肤组织修复领域的发展进行了展望。

Three-dimensional (3D) printing is a low-cost, high-efficiency production method, which can reduce the current cost and increase the profitability of skin repair material industry nowadays, and develop products with better performance. The 3D printing technology commonly used in the preparation of skin repair materials includes fused deposition molding technology and three-dimensional bio-printing technology. Fused deposition molding technology has the advantages of simple and light equipment, but insufficient material selection. 3D bio-printing technology has more materials to choose from, but the equipment is cumbersome and expensive. In recent years, research on both technologies has focused on the development and application of materials. This article details the principles of fused deposition modeling and 3D bioprinting, research advances in wound dressings and tissue engineering skin production, and future developments in 3D printing on skin tissue repair, including cosmetic restoration and biomimetic tissue engineering. Also, this review prospects the development of 3D printing technology in skin tissue repairment.

关键词: 三维打印; 伤口敷料; 组织工程皮肤; 熔融沉积成型; 三维生物打印

Key words: three-dimensional printing; wound dressings; tissue engineering skin; fused deposition modeling; three-dimensional bioprinting

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. 于家傲. 皮肤修复材料的发展历程-理念与技术的融合. 中华损伤与修复杂志, 2011, 6(1): 12-15.
2. 王彤华, 周雄丽, 谢利勤, 等. 湿性敷料在伤口护理中的应用进展. 齐齐哈尔医学院学报, 2016, 37(24): 3078-3079.
3. 刘公洪, 廖毅. 湿性敷料治疗在烧伤创面的应用进展. 西南军医, 2012, 14(1): 113-114.
4. Kamoun E A, Kenawy E S, Chen Xin. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res, 2017, 8(3): 217-233.
5. Eberlein T, Gerke P, Lorenzc H, et al. Advantages in wound healing by a topical easy to use wound healing lipo-gel for abrasive wounds-Evidence from a randomized, controlled experimental clinical study. Wound Medicine, 2016, 15: 11-19.
6. 冯占录, 张兴宏, 赵燕玲. 湿性治疗技术救治26例烧伤病人的体会//第七届全国烧伤创疡学术会议论文汇编. 北京: 中国中西医结合学会烧伤专业委员会, 2002: 107.
7. 陈晓洁, 吕爱凤, 高晶, 等. 功能敷料的" 伤口湿润环境愈合”理论与实践. 生物医学工程学进展, 2013, 34(1): 31-34.
8. 江敏君, 邱玉友, 廖新芳. 烧伤创面应用湿性愈合疗法的效果观察与成本效益分析. 实用医学杂志, 2014, 30(15): 2523-2524.
9. 钱程. 壳聚糖纤维医用敷料的生产及应用. 纺织学报, 2006, 27(11): 100-105.
10. 马艳红. 耗材产业:" 增速换挡期”注重动力转换. 中国医药报, 2016-08-04(3).
11. 马东东, 周玉杰, 路婷婷, 等. 组织工程皮肤研究现状. 现代生物医学进展, 2014, 14(6): 1183-1187.
12. 郝文丽, 张平, 吴训伟. 组织工程皮肤的现状和展望. 北京生物医学工程, 2016, 35(1): 94-99.
13. 杨维, 崔占峰. 组织工程皮肤发展现状. 中国科学: 生命科学, 2015, 45(5): 460-470.
14. 林越威, 曾辉宇, 刘啸宇, 等. 三维打印技术在人工器官生产上的应用. 生物医学工程学杂志, 2015, 32(5): 1160-1164.
15. 罗文峰, 杨雪香, 敖宁建. 生物医用材料的3D打印技术与发展. 材料导报, 2016, 30(7): 81-86.
16. 邓滨, 欧阳汉斌, 黄文华. 3D打印在医学领域的应用进展. 中国医学物理学杂志, 2016, 33(4): 389-392.
17. 魏玉雪, 刘晓秋, 李迪, 等. 3D打印技术在细胞打印方面的应用与发展. 海南医学, 2017, 28(5): 801-804.
18. 田晓红, 张彬, 房艳, 等. 大鼠脂肪源性干细胞与三维打印明胶支架的兼容性. 解剖学报, 2017, 48(2): 209-216.
19. 工业和信息化部, 发展改革委, 教育部, 等. 增材制造产业发展行动计划(2017~2020年). 铸造设备与工艺, 2018(02): 59-63.
20. 刘凤珍, 刘明信, 王运华, 等. 3D打印技术在医学领域中的应用研究进展. 中国材料进展, 2016, 35(5): 381-385.
21. Stansbury J W, Idacavage M J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater, 2016, 32(1): 54-64.
22. Kim K, Park J, Suh J H, et al. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens Actuators A Phys, 2017, 263: 493-500.
23. Liu Wei, Wang Daming, Huang Jianghong, et al. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 2): 976-982.
24. Hung K C, Tseng C S, Dai L G, et al. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials, 2016, 83: 156-168.
25. Mohanty S, Sanger K, Heiskanen A, et al. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mater Sci Eng C Mater Biol Appl, 2016, 61: 180-189.
26. Muwaffak Z, Goyanes A, Clark V, et al. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm, 2017, 527(1/2): 161-170.
27. Cheng Y L, Chen F. Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application. Materials Science and Engineering: C, 2017, 81: 66-73.
28. Bégin-Drolet A, Dussault M A, Fernandez S A, et al. Design of a 3D printer head for additive manufacturing of sugar glass for tissue engineering applications. Additive Manufacturing, 2017, 15: 29-39.
29. Munaz A, Vadivelu R K, John J S, et al. Three-dimensional printing of biological matters. Journal of Science: Advanced Materials and Devices, 2016, 1(1): 1-17.
30. Włodarczyk-Biegun M K, Del Campo A. 3D bioprinting of structural proteins. Biomaterials, 2017, 134: 180-201.
31. Zhu Wei, Ma Xuanyi, Gou Maling, et al. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol, 2016, 40: 103-112.
32. El-Serafi A T, El-Serafi I T, Elmasry M, et al. Skin regeneration in three dimensions, current status, challenges and opportunities. Differentiation, 2017, 96: 26-29.
33. 刘南波. 3D打印结构性微环境调控表皮细胞分化为汗腺的效应研究. 广州: 南方医科大学, 2016.
34. 孙凯, 李瑞欣, 范猛, 等. 3D打印丝素蛋白/胶原蛋白支架的制备及性能. 中国组织工程研究, 2017, 21(2): 280-285.
35. Rodriguez M J, Brown J, Giordano J, et al. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials, 2017, 117: 105-115.
36. Pati F, Ha D H, Jang J, et al. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials, 2015, 62: 164-175.
37. Bootsma K, Fitzgerald M M, Free B, et al. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. J Mech Behav Biomed Mater, 2017, 70: 84-94.
38. 谷龙. 面向皮肤组织工程的水凝胶与细胞打印研究. 杭州: 浙江大学, 2017.
39. Malyala S K, Kumar Y R, Rao C S P. Organ printing with life cells: a review. Materials Today: Proceedings, 2017, 4(2): 1074-1083.
40. Rezende R A, Kasyanov V, Mironov V, et al. Organ printing as an information technology. Procedia Engineering, 2015, 110: 151-158.
41. Jessop Z M, Al-Sabah A, Gardiner M D, et al. 3D bioprinting for reconstructive surgery: Principles, applications and challenges. J Plast Reconstr Aesthet Surg, 2017, 70(9): 1155-1170.
42. Shafiee A, Atala A. Printing technologies for medical applications. Trends Mol Med, 2016, 22(3): 254-265.
43. Radenkovic D, Solouk A, Seifalian A. Personalized development of human organs using 3D printing technology. Med Hypotheses, 2016, 87: 30-33.
44. Mäkitie A A, Salmi M, Lindford A, et al. Three-dimensional printing for restoration of the donor face: A new digital technique tested and used in the first facial allotransplantation patient in Finland. J Plast Reconstr Aesthet Surg, 2016, 69(12): 1648-1652.
45. Martini R, Balit Y, Barthelat F. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta Biomater, 2017, 55: 360-372.