生物医学工程学杂志

生物医学工程学杂志

人工半月板移植物研究进展

查看全文

半月板损伤是当今社会常见的膝关节损伤。为解决半月板损伤无法修复和半月板全部(或部分)切除术后综合征等临床问题,作为半月板重建术治疗替代物的人工半月板移植物已成为全世界研究热点。目前,人工半月板移植物主要包括降解型半月板支架和替代型半月板移植物。虽然已有商品化人工半月板移植物(如 CMI®、Actifit®和 NUsurface®)应用于临床,但是没有一种移植物可重塑或长期替代半月板组织达到完美解决半月板切除术后症状和有效预防软骨退行性病变的效果。本文着重介绍不同类型人工半月板移植物的研究进展及其应用前景、优势和不足,以期为半月板移植物的研究提供总结、参考和展望。

Meniscus injury has been one of the most common knee injuries in current society. The research on artificial meniscus implants as substitutes in meniscus reconstruction therapy has become global focus in order to solve clinical problems such as irreparable meniscus injury and symptoms after full or partial meniscectomy. At present, researches on artificial meniscus implants mainly focus on biodegradable meniscus scaffolds and non-biodegradable meniscus substitutes. Although the commercialized meniscal implants, such as CMI®, Actifit® and NUsurface®, have been applied in the clinical, none of them can perfectively restore or permanently replace the natural meniscus tissue, effectively solve the symptoms after meniscectomy, and prevent cartilage degenerative diseases. The research progress, application, advantages and disadvantages of different kinds of artificial meniscus implants are reviewed in this manuscript, and the prospect is provided.

关键词: 半月板重建; 人工半月板移植物; 半月板组织工程支架; 半月板移植物

Key words: meniscus reconstruction; artificial meniscus implants; meniscus tissue engineering scaffolds; meniscus implants

引用本文: 李金歌, 肖建林, 左建林, 杨小牛. 人工半月板移植物研究进展. 生物医学工程学杂志, 2018, 35(3): 488-492. doi: 10.7507/1001-5515.201710038 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Rongen J J, van Tienen T G, van Bochove B, et al. Biomaterials in search of a meniscus substitute. Biomaterials, 2014, 35(11): 3527-3540.
2. Meniscus Injuries. Medscape Reference 2016. RefType: Online Source. http://emedicine.medscape.com/article/90661-overview.
3. Meniscal Tear on MIR. Medscape Reference 2016. RefType: Online Source. http://emedicine.medscape.com/article/399552-overview.
4. Fox A J, Wanivenhaus F, Burge A J, et al. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clinical Anatomy, 2015, 28(2): 269-287.
5. 金昕, 石仕元, 赖震, 等. 半月板损伤的诊治进展. 浙江中西医结合杂志, 2016, 26(09): 870-873
6. 朱卫星. 中医综合疗法治疗早期创伤性半月板损伤临床研究. 中医学报, 2017, 32(07): 1293-1296
7. 李贵星. 关节腔内注射玻璃酸钠治疗半月板损伤效果分析. 海峡药学, 2017, 29(04): 135-136
8. 夏琪鹏. 半月板损伤关节镜术后透明质酸关节腔内注射的应用分析. 药品评价, 2017, 4(20): 23-25
9. 王宇, 刘松波, 刘宪民, 等. 关节镜下外侧半月板前角缝合 34 例临床观察. 创伤与急危重病医学, 2017, 5(1): 41-44
10. 张新涛, 江小成, 尤田, 等. 同种异体半月板移植 61 例的中期疗效观察. 中华关节外科杂志:电子版, 2016, 10(1): 15-19
11. 王小飞. 关节镜下半月板成形术与半月板切除术治疗膝关节半月板损伤对比研究. 包头医学, 2017, 41(02): 82-83
12. 郑冲, 甄志雷, 杨国夫. 半月板损伤修复与重建研究进展. 医学研究杂志, 2016, 45(4): 178-180, 112
13. Stone K R, Rodkey W G, Webber R J, et al. Future directions. collagen-based prostheses for meniscal regeneration. Clin Orthop Relat Res, 1990(252): 129-135.
14. Heo J, Koh R H, Shim W, et al. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv Transl Res, 2016, 6(2): 148-158.
15. Na Yin, Chen Shiyan, Cao Yimeng. Improvement in mechanical properties and biocompatibility of biosynthetic bacterial cellulose/lotus root starch composites. Chinese Journal of Polymer Science, 2017, 35(03): 354-364.
16. Mandal B B, Park S H, Gil E S, et al. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials, 2011, 32(2): 639-651.
17. Li Gang, Li Fei, Zheng Zhaozhu, et al. Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility. Journal of Materials Science, 2016, 51(6): 3025-3035.
18. Sun Jie, Vijayavenkataraman S, Liu Hang. An overview of scaffold design and fabrication technology for engineered knee meniscus. Materials (Basel), 2017, 10(1): 19.
19. Welsing R T, van Tienen T G, Ramrattan N A, et al. Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant. A 2-year follow-up study in dogs. American Journal of Sports Medicine, 2008, 36(10): 1978-1989.
20. Maher S A, Rodeo S A, Doty S B, et al. Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy, 2010, 26(11): 1510-1519.
21. Bulgheroni E, Grassi A, Campagnolo M, et al. Comparative study of collagen versus synthetic-based meniscal scaffolds in treating meniscal deficiency in young active population. Cartilage, 2016, 7(1): 29-38.
22. Gelber P E, Petrica A M, Isart A, et al. The magnetic resonance aspect of a polyurethane meniscal scaffold is worse in advanced cartilage defects without deterioration of clinical outcomes after a minimum two-year follow-up. Knee, 2015, 22(5): 389-394.
23. Chiari C, Koller U, Dorotka R, et al. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis and Cartilage, 2006, 14(10): 1056-1065.
24. Kon E, Filardo G, Tschon M, et al. Tissue engineering for total meniscal substitution: animal study in sheep model-results at 12 months. Tissue Eng Part A, 2012, 18(15/16): 1573-1582.
25. Baek J, Chen Xian, Sovani S, et al. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel. J Orthop Res, 2015, 33(4): 572-583.
26. 杨军忠, 刘卅. 生物再生材料迎来产业快速发展期. 中国医疗器械信息, 2015(11): 35-36, 45.
27. Yuan Zhiguo, Liu Shuyun, Hao Chunxiang, et al. AMECM/DCB scaffold prompts successful total meniscus Reconstruction in a rabbit total meniscectomy model. Biomaterials, 2016, 111: 13-26.
28. Gao Shuang, Yuan Zhiguo, Xi Tingfei, et al. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications. Front Mater Sci, 2016, 10(2): 101-112.
29. Gao Shuang, Yuan Zhiguo, Guo Weimin, et al. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci. Mater Sci Eng C Mater Biol Appl, 2017, 71: 891-900.
30. Gao Shuang, Guo Weimin, Chen Mingxue, et al. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. Journal of Materials Chemistry B, 2017, 5(12): 2273-2285.
31. Merriam A R, Patel J M, Culp B M, et al. Successful total meniscus reconstruction using a novel fiber-reinforced scaffold: a 16- and 32-week study in an ovine model. Am J Sports Med, 2015, 43(10): 2528-2537.
32. Kobayashi M, Chang Yongshun, Oka Masanori. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials, 2005, 26(16): 3243-3248.
33. Hayes J C, Kennedy J E. An evaluation of the biocompatibility properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application. Mater Sci Eng C Mater Biol Appl, 2016, 59: 894-900.
34. Hayes J C, Curley C, Tierney P, et al. Biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel for knee meniscus applications, including comparison with human donor samples. J Mech Behav Biomed Mater, 2016, 56: 156-164.
35. Majd S E, Kuijer R, Schmidt T A, et al. Role of hydrophobicity on the adsorption of synovial fluid proteins and biolubrication of polycarbonate urethanes: materials for permanent meniscus implants. Mater Des, 2015, 83: 514-521.
36. Majd S E, Rizqy A I, Kaper H J, et al. An in vitro study of cartilage-meniscus tribology to understand the changes caused by a meniscus implant. Colloids Surf B Biointerfaces, 2017, 155: 294-303.
37. Vrancken A C, Madej W, Hannink G, et al. Short term evaluation of an anatomically shaped polycarbonate urethane total meniscus replacement in a goat model. PLoS One, 2015, 10(7): e0133138.
38. Vrancken A C, Eggermont F, van Tienen T G, et al. Functional biomechanical performance of a novel anatomically shaped polycarbonate urethane total meniscus replacement. Knee Surg Sports Traumatol Arthrosc, 2016, 24(5): 1485-1494.
39. Vrancken A C, Hannink G, Madej W, et al. In vivo performance of a novel, anatomically shaped, total meniscal prosthesis made of polycarbonate urethane: a 12-month evaluation in goats. Am J Sports Med, 2017, 45(12): 2824-2834.
40. Chen Mingxue, Gao Shuang, Wang Pei, et al. The application of electrospinning used in meniscus tissue engineering. J Biomater Sci Polym Ed, 2018, 29(5): 461-475.