生物医学工程学杂志

生物医学工程学杂志

基于局部高斯分布拟合的牙齿锥形束计算机断层图像分割方法

查看全文

口腔牙齿图像分割对于牙齿的正畸手术、义齿种植等有重要的意义。由于牙根被牙槽骨包围,磨牙拓扑结构复杂,以及在牙齿内部有牙髓腔的存在,导致分割时易出现过分割、内部轮廓等问题。为进一步提高分割精度,针对上述问题本文提出了一种基于局部高斯分布拟合与边缘检测相结合的分割算法。该算法融合了像素局部邻域的方差和均值,并将图像梯度信息引入边缘检测,提高了分割算法的稳定性。在实验中,基于锥形束计算机断层图像,完成了对牙根图像的精确分割,并与当前比较经典的算法进行了对比,结果表明,本文算法能够更好地区分牙根以及牙根周围的牙槽骨,能够更精确地分割出牙根及分裂的磨牙,没有出现牙髓腔内部轮廓的情况。

Oral teeth image segmentation plays an important role in teeth orthodontic surgery and implant surgery. As the tooth roots are often surrounded by the alveolar, the molar’s structure is complex and the inner pulp chamber usually exists in tooth, it is easy to over-segment or lead to inner edges in teeth segmentation process. In order to further improve the segmentation accuracy, a segmentation algorithm based on local Gaussian distribution fitting and edge detection is proposed to solve the above problems. This algorithm combines the local pixels’ variance and mean values, which improves the algorithm’s robustness by incorporating the gradient information. In the experiment, the root is segmented precisely in cone beam computed tomography (CBCT) teeth images. Segmentation results by the proposed algorithm are then compared with the classical algorithms’ results. The comparison results show that the proposed method can distinguish the root and alveolar around the root. In addition, the split molars can be segmented accurately and there are no inner contours around the pulp chamber.

关键词: 锥形束计算机断层扫描; 局部高斯分布拟合; 边缘检测; 牙齿图像分割

Key words: cone beam computed tomography; local Gaussian distribution fitting; edge detection; tooth segmentation

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 汪葛, 王远军. 基于水平集的牙齿CT图像分割技术. 计算机应用, 2016, 36(03): 827-832.
2. Dufour A, Shinin V, Tajbakhsh S, et al. Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans Image Process, 2005, 14(9): 1396-1410.
3. Heo H. Segmentation of tooth in CT images for the 3D reconstruction of teeth. Spie Proceedings, 2004, 5298(2): 157-160.
4. Xia Zeyang, Gan Yangzhou, Chang Lichao, et al. Individual tooth segmentation from CT images scanned with contacts of maxillary and mandible teeth. Comput Methods Programs Biomed, 2017, 138: 1-12.
5. Xia Zeyang, Gan Yangzhou, Xiong Jing, et al. Crown segmentation from computed tomography images with metal artifacts. IEEE Signal Process Lett, 2016, 23(5): 678-682.
6. Akhoondali H, Zoroofi R A, Shirani G. Rapid automatic segmentation and visualization of teeth in CT-scan data. J Appl Sci, 2009, 9(11): 2031-2044.
7. Zhang W. Algorithms of 3D segmentation and reconstruction based on teeth CBCT images. Lecture Notes in Electrical Engineering, 2011, 100: 713-720.
8. Gao Hui, Chae O. Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern Recognit, 2010, 43(7): 2406-2417.
9. Gan Yangzhou, Xia Zeyang, Xiong Jing, et al. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model. Med Phys, 2015, 42(1): 14-27.
10. Ji Dongxu, Ong S H, Foong K W. A level-set based approach for anterior teeth segmentation in cone beam computed tomography images. Comput Biol Med, 2014, 50(1): 116-128.
11. Hosntalab M, Zoroofi R A, Tehrani-Fard A A, et al. Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set. Int J Comput Assist Radiol Surg, 2008, 3(3/4): 257-265.
12. 王立新, 刘新新, 刘希云, 等. 基于区域自适应形变模型的CT图像牙齿结构测量方法研究. 生物医学工程学杂志, 2016, 33(2): 308-314.
13. Gan Y, Xia Z, Xiong J, et al. Angled tooth segmentation from computerized tomography images// 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Jeju Island, Korea: IEEE, 2017: 3413-3146.
14. Wang Li, He Lei, Mishra A, et al. Active contours driven by local Gaussian distribution fitting energy. Signal Process, 2009, 89(12): 2435-2447.
15. Chan T F, Vese L A. Active contours without edges. IEEE Trans Image Process, 2001, 10(2): 266-277.
16. Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys, 1988, 79(1): 12-49.
17. Li C, Kao C Y, Gore J C, et al. Implicit active contours driven by local binary fitting energy// 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, America: IEEE, 2007: 1-7.
18. Chen Y T, Tseng D C. Medical image segmentation based on the Bayesian level set method// Medical Imaging and Informatics Second International Conference. Beijing, China: SpringerLink, 2007: 25-34.
19. Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: A new variational formulation// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. California, America: IEEE, 2005: 430-436.
20. Caselles V. Geometric models for active contours// Proceedings 1995 International Conference on Image Processing. Washington, America: IEEE, 1995: 9-12.