生物医学工程学杂志

生物医学工程学杂志

基于通用赤池信息量准则改进维纳-格兰杰因果索引算法的颅内脑电效应连通性研究

查看全文

本文的目标是处理并分析使用深度电极在难治性癫痫患者癫痫发作期间其大脑皮层中记录到的癫痫脑电信号间的大脑效应连通性。维纳-格兰杰因果索引算法是一种众所周知的检测脑电信号间大脑效应连通性的有效方法。它是一种基于线性自回归模型的方法,而模型参数估计问题在其用于脑电因果效应连通性研究中的计算准确性与鲁棒性方面起着至关重要的作用。本文针对这一问题,使用了我们提出的改进的赤池信息量准则来估计算法中自回归模型的模型阶数,以提高维纳-格兰杰因果索引算法检测大脑效应连通性的性能。实验仿真结果表明:不管是在线性随机系统中还是在能生成模拟癫痫信号的生理模型中,该改进的维纳-格兰杰因果索引算法在检测脑效应连通性上都表现出良好的鲁棒性。

The objective is to deal with brain effective connectivity among epilepsy electroencephalogram (EEG) signals recorded by use of depth electrodes in the cerebral cortex of patients suffering from refractory epilepsy during their epileptic seizures. The Wiener-Granger Causality Index (WGCI) is a well-known effective measure that can be useful to detect causal relations of interdependence in these kinds of EEG signals. It is based on the linear autoregressive model, and the issue of the estimation of the model parameters plays an important role in the calculation accuracy and robustness of WGCI to do research on brain effective connectivity. Focusing on this issue, a modified Akaike’s information criterion algorithm is introduced in the computation of the WGCI to estimate the orders involved in the underlying models and in order to advance the performance of WGCI to detect brain effective connectivity. Experimental results support the interesting performance of the proposed algorithm to characterize the information flow both in a linear stochastic system and a physiology-based model.

关键词: 因果索引; 赤池信息量准则; 基于生理学的模型; 癫痫; 大脑连通性

Key words: causality index; Akaike's information criterion; physiology-based model; epilepsy; brain connectivity

引用本文: 杨淳沨, 向文涛, 伍家松, 孔佑勇, 姜龙玉, Le BouquinJèannes Régine, 舒华忠. 基于通用赤池信息量准则改进维纳-格兰杰因果索引算法的颅内脑电效应连通性研究. 生物医学工程学杂志, 2018, 35(5): 665-671. doi: 10.7507/1001-5515.201709032 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Engel J Jr. Outcome with respect to epileptic seizures. Surgical Treatment of the Epilepsies, 1993: 609-621.
2. Ansari-Asl K, Senhadji L, Bellanger J J, et al. Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 74(3 Pt 1): 031916.
3. Wiener N. The theory of prediction. Modern Mathematics for Engineers, 1956: 125-139.
4. Granger C W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969, 37(3): 424-438.
5. Kayser A S, Sun F T, D'Esposito M. A comparison of Granger causality and coherency in fMRI-based analysis of the motor system. Hum Brain Mapp, 2009, 30(11): 3475-3494.
6. Cadotte A J, DeMarse T B, Mareci T H, et al. Granger causality relationships between local field potentials in an animal model of temporal lobe epilepsy. J Neurosci Methods, 2010, 189(1): 121-129.
7. Bressler S L, Seth A K. Wiener-Granger causality: a well established methodology. Neuroimage, 2011, 58(2): 323-329.
8. Akaike H. Information theory and an extension of the maximum likelihood principle//Petrov B N, Caski F. Proceedings of the Second International Symposium on Information Theory. Budapest: Akademiai Kiado, 1973: 267-281.
9. Yang Chunfeng, Le Bouquin Jeannes R, Bellanger J J, et al. A new strategy for model order identification and its application to transfer entropy for EEG signals analysis. IEEE Trans Biomed Eng, 2013, 60(5): 1318-1327.
10. Kariya T, Kurata H. Generalized least squares. Chichester: John Wiley & Sons, 2004.
11. Wendling F, Bellanger J J, Bartolomei F, et al. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern, 2000, 83(4): 367-378.
12. Wendling F, Hernandez A, Bellanger J J, et al. Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol, 2005, 22(5): 343-356.