生物医学工程学杂志

生物医学工程学杂志

多模式刺激下运动想象脑电信号的特征调制研究

查看全文

事件相关去同步(ERD)现象是脑电信号的基本特征,以 ERD 特征分析为基础的运动想象脑–机接口在运动功能康复方面具有重要意义。能否有效提取脑电信号中的 ERD 特征是决定脑–机接口性能的关键,因此研究受试者何种刺激模式下会产生明显的 ERD 特征至关重要。本文试验设计了 4 种不同的刺激模式(静态文字刺激、抓握视频刺激、手指序列运动视频刺激以及带声音的手指序列运动视频刺激),并分析了这几种刺激模式下的 ERD 特征。综合时频图谱、功率谱曲线、ERD 值和脑地形图分析结果发现,手指序列运动视频刺激和带声音的手指序列运动视频刺激模式下,激发的 ERD 特征程度更深、范围更广,在以 ERD 特征分析为基础的脑–机接口的实际应用中也会有更好的效果,也可以在一定程度上提高脑–机接口系统使用者的认可度和接受度。

Event-related desynchronization (ERD) is the basic feature of electroencephalogram (EEG), and the brain-computer interface based on motor imagery (MI-BCI) with the foundation of the analysis of ERD is of great significance in motor function recovery. The valid ERD characteristics extracted from EEG are the key to the performance of the BCI, so the study of which kind of stimulation mode can prompt subjects to generate more obvious characteristics of ERD is crucial. Four different stimulation modes are designed in this paper, and the effects of motion imagery tasks under static text stimulation, grip video stimulation, serial motion video stimulation of fingers as well as serial motion video stimulation of fingers with sound on the characteristics of ERD are analyzed. Combining the analysis of time-frequency spectrum, the power spectral density curve, ERD value and brain topographic map, it is shown that the ERD under serial motion video stimulation of fingers and serial motion video stimulation of fingers with sound modes is much stronger and has wider range of activation, and the BCI based on the analysis of ERD will have a better effect on practical application. As a result, the recognition and acceptance of the users of BCI system are improved in some extent.

关键词: 运动想象; 事件相关去同步; 动态刺激; 激活

Key words: motor imagery; ERD; dynamic stimulation; activation

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 万柏坤, 刘延刚, 明东, 等. 基于脑电特征的多模式想象动作识别. 天津大学学报, 2010, 43(10): 895-900
2. Lotte F, Congedo M, Lécuyer A, et al. A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng, 2007, 4(2): R1-R13.
3. Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm, 2007, 114(10): 1265-1278.
4. Caria A, Weber C, Brötz D, et al. Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology, 2011, 48(4): 578-582.
5. Stępień M, Conradi J, Waterstraat G, et al. Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke. Neurosci Lett, 2011, 488(1): 17-21.
6. Wolpaw J R, Birbaumer N, Mcfarland D J, et al. Brain–computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113(6): 767-791.
7. Prasad G, Herman P, Coyle D, et al. Applying a brain-computer interface to support motor imagery practice in People with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil, 2010, 7: 60.
8. Pfurtscheller G, Neuper C. Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments. Prog Brain Res, 2006, 159: 433-437.
9. Gomez-Rodriguez M, Peters J, Hill J, et al. Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. J Neural Eng, 2011, 8(3): 036005.
10. Oostra K M, Vereecke A, Jones K, et al. Motor imagery ability in patients with traumatic brain injury. Arch Phys Med Rehabil, 2012, 93(5): 828-833.
11. Sun Yao, Wei Wei, Luo Zhizeng, et al. Improving motor imagery practice with synchronous action observation in stroke patients. Top Stroke Rehabil, 2016, 23(4): 245-253.
12. Liang Shuang, Choi K S, Qin Jing, et al. Improving the discrimination of hand motor imagery via virtual reality based visual guidance. Comput Methods Programs Biomed, 2016, 132: 63-74.
13. Wang B A, Viswanathan S, Abdollahi R O, al. Frequency-specific modulation of connectivity in the ipsilateral sensorimotor cortex by different forms of movement initiation. NeuroImage, 2017, 159:248-260.
14. Tangwiriyasakul C, Verhagen R, van Putten M J, et al. Importance of baseline in event-related desynchronization during a combination task of motor imagery and motor observation. J Neural Eng, 2013, 10(2): 026009.
15. Yokosawa K, Watanabe T, Kikuzawa D, et al. Amplitude modulation of alpha-band rhythm caused by mimic collision: MEG study//2013 35th annual international conference of the ieee engineering in medicine and biology society (EMBC), Osaka, 2013: 6187-6190.
16. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including Independent component analysis. J Neurosci Methods, 2004, 134(1): 9-21.
17. 姜涛. 基于皮质脑电的脑运动区功能定位原理与算法研究. 广州: 华南理工大学, 2010.