生物医学工程学杂志

生物医学工程学杂志

9.4 T 大鼠脊椎磁共振成像射频线圈

查看全文

在大鼠脊椎磁共振扫描实验中,主磁场强度较低且传统射频线圈成像深度浅、空间兼容性差、硬件成本要求高,最终导致大鼠脊椎部位图像信噪比降低。本文开发一种用于 9.4 T 高场下大鼠脊椎磁共振成像的射频线圈,旨在提高大鼠脊椎部位扫描图像信噪比的同时又能避免所设计线圈对特殊状态下(比如心脏导管插入等)的大鼠脊椎扫描造成的空间限制。本文通过仿真建模、线圈原型建立以及带负载 Q 值测试和 9.4 T 下水膜和活体大鼠脊椎线圈扫描成像对比实验,验证了所设计射频线圈在大鼠脊椎测试应用的优势。

For rat spinal magnetic resonance imaging (MRI) experiments, due to the lower main magnetic field strength, shallower detected depth and poor spatial compatibility of the traditional radio frequency (RF) coil, the image signal-to-noise ratio (SNR) of rat spinal was rather lower. In this paper, a RF coil for rat spinal MRI at 9.4 T was developed to improve the image quality and at the same time to avoid the space limitation while scanning in special conditions (cardiac catheterization, etc.). In this article, open birdcage structure was built and magnetic field distribution was calculated. The phantom and rat spine MRI imaging were experimented at 9.4 T to verify the advantage of the coil in rat spine MRI application.

关键词: 大鼠脊椎磁共振成像; 9.4 T; 射频线圈; 开放鸟笼

Key words: rat spinal magnetic resonance imaging; 9.4 T; radio frequency coil; open birdcage

引用本文: 徐永锋, 杨鸿毅, 钟凯. 9.4 T 大鼠脊椎磁共振成像射频线圈. 生物医学工程学杂志, 2019, 36(1): 116-120. doi: 10.7507/1001-5515.201707045 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 侯淑莲, 谢寰彤, 陈伟, 等. 永磁微型磁共振成像仪的射频线圈及鼠成像实验. 生物医学工程学杂志, 2014, 31(5): 1023-1030.
2. 韩继钧, 李岩, 辛学刚. 射频线圈设计中盆腔组织对电磁场影响研究. 生物医学工程学杂志, 2013, 30(4): 177-181.
3. 魏树峰, 杨文晖, 郭丽慧, 等. 一种用于开放式MRI的射频发射线圈设计. 波谱学杂志, 2012, 29(3): 354-360.
4. 乔立华, 王文韬, 许跃, 等. 一种可拆装式的脑外科手术用磁共振成像线圈. 波谱学杂志, 2013, 30(1): 21-28.
5. 袁子龙, 张照喜, 邱建峰, 等. 基于ACR体模的磁共振射频线圈性能的对比. 中国医疗设备, 2015, 30(1): 100-103.
6. 李兴鑫. 磁共振成像小尺寸射频线圈设计的研究. 杭州: 中国计量学院, 2015.
7. 邓瑞芳. CT与MRI影像学诊断脊柱结核的差异. 中国医疗器械杂志, 2015, 39(4): 302-303.
8. 梅立雪, 王鹤, 李鲠颖. 低场MRI系统中2通道脊椎线圈的研制. 波谱学杂志, 2008, 25(1): 33-38.
9. Banson M L, Cofer G P, Hedlund L W, et al. Surface coil imaging of rat spine at 7.0 T. Magn Reson Imaging, 1992, 10(6): 929-934.
10. Li Mingyan, Zuo Zhentao, Jin Jin, et al. Highly accelerated acquisition and homogeneous image reconstruction with rotating RF coil array at 7 T-A phantom based study. J Magn Reson, 2014, 240: 102-112.
11. Mogatadakala K V, Bankson J A, Narayana P A. Three-element phased-array coil for imaging of rat spinal cord at 7 T. Magn Reson Med, 2008, 60(6): 1498-1505.
12. 辛学刚, 韩继钧, 冯衍秋, 等. 多通道线圈去耦技术及其在新型术中磁共振射频接收线圈的应用. 生物医学工程学杂志, 2011, 28(2): 223-227.
13. 曹辉, 曹厚德. MRI成像装置通道数验收鉴定的研究. 中国医疗器械杂志, 2016, 40(3): 217-220.
14. Fan Xiaobing, Markiewicz E J, Zamora M, et al. Comparison and evaluation of mouse cardiac MRI acquired with open birdcage, single loop surface and volume birdcage coils. Phys Med Biol, 2006, 51(24): N451-N459.
15. Jin Jianming. Electromagnetic analysis and design in magnetic resonance imaging. New York: CRC Press, 1988: 157-164.
16. Briguet A. NMR probeheads for biophysical and biomedical experiments. London: Imperial College Press, 2006.
17. Meyerspeer M, Serés Roig E, Gruetter R, et al. An improved trap design for decoupling multinuclear RF coils. Magn Reson Med, 2014, 72(2): 584-590.
18. 李明洋, 刘敏. HFSS电磁仿真设计从入门到精通. 北京: 人民邮电出版社, 2013.