生物医学工程学杂志

生物医学工程学杂志

一种可穿戴式心冲击信号-心电信号联合采集系统

查看全文

心冲击图(BCG)和心电图(ECG)分别从力学和电学两个维度实现心脏功能的检测。通过提取两种信号相应的特征参数并进行联合分析,可以反映心脏收缩性能等重要心脏生理指标。针对目前相关采集设备复杂笨重的缺点,本文设计了一种可穿戴式 BCG-ECG 信号联合采集系统,实现了基于加速度计的 BCG 信号采集和基于导电橡胶电极的 ECG 信号采集。通过采集 6 名健康人的信号,以压电薄膜采集的 BCG 信号为参考信号,对比信号波形特征,并分析心动周期采集的差异性。设备采集两种信号波形特征与标准信号一致,两种信号在心动周期采集与传统方法无显著性差异。结果表明,该套系统能精确采集人体 BCG 信号和 ECG 信号,为后续在 BCG 信号形成机制以及健康应用方面的研究提供基础。

Ballistocardiogram (BCG) and electrocardiogram (ECG) can realize the detection of cardiac function from mechanical and electrical dimensions respectively. By extracting the corresponding characteristic parameters of the two signals and carrying out joint analysis, an important cardiac physiological index such as cardiac contractility, can be reflected. To overcome the shortcomings of complication and heaviness of the existing acquisition equipment, a wearable BCG-ECG signal acquisition system is designed in this paper, which realizes BCG signal acquisition based on accelerometer and ECG signal acquisition based on conductive rubber electrodes. The signals of 6 healthy persons were collected, and BCG signals collected by piezoelectric films were used as reference signals. The waveform characteristics of signals were compared, and the difference of cardiac cycle acquisition was analyzed. The waveform characteristics of the two signals acquired by the device were consistent with the standard signals, and there was no significant difference in the acquisition of the two signals of the cardiac cycle between the proposed method and the traditional method. The results show that the system can accurately collect human BCG signals and ECG signals. The system provides a basis for subsequent research on BCG signal formation mechanism and health applications.

关键词: 心冲击图; 心电图; 加速度计

Key words: ballistocardiogram; electrocardiogram; accelerometer

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Starr I, Schroeder H A. Ballistocardiogram. II. Normal standards, abnormalities commonly found in diseases of the heart and circulation, and their significance. J Clin Invest, 1940, 19(3): 437-450.
2. Gordon J W. Certain molar movements of the human body produced by the circulation of the blood. J Anat Physiol, 1877, 11(Pt 3): 533-536.
3. Starr I, Rawson A, Schroeder H, et al. Studies on the estimation of cardiac ouptut in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram. Am J Physiol, 1939, 127(1): 1-28.
4. 俞梦孙, 杨军, 周玉彬. 用微动敏感床垫监测睡眠的研究. 中华航空航天医学杂志, 1999, 10(1): 40.
5. 张晶, 曹欣荣, 唐劲天, 等. 压电薄膜式心冲击图信号采集系统的设计与实现. 生命科学仪器, 2013, 11(5): 57-62.
6. 王春武, 王旭, 龙哲, 等. 坐立两便式心冲击信号检测系统设计与实现. 东北大学学报: 自然科学版, 2012, 33(6): 786-789.
7. 李恩侨. 基于单片机的心冲击信号采集与处理方法的研究. 哈尔滨: 哈尔滨工业大学, 2015.
8. Pinheiro E, Postolache O, Girão P. Theory and developments in an unobtrusive cardiovascular system representation: ballistocardiography. Open Biomed Eng J, 2010, 4(1): 201-216.
9. Giovangrandi L, Inan O T, Banerjee D, et al. Preliminary results from BCG and ECG measurements in the heart failure clinic//2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, CA, USA: IEEE, 2012: 3780-3783.
10. Zhang Xianwen, Zhang Liyan, Wang Kun, et al. A rapid approach to assess cardiac contractility by ballistocardiogram and electrocardiogram. Biomed Tech (Berl), 2018, 63(2): 113-122.
11. Gomez-Clapers J, Serra-Rocamora A, Casanella R, et al. Uncertainty factors in time-interval measurements in ballistocardiography//Proceedings of 19th Symposium IMEKO TC 4 Symposium and 17th IWACD Workshop. Barcelona, Spain: IMEKO, 2013: 395-399.
12. 提素芳, 白广芹, 李菲, 等. 电子血压计与汞柱血压计测量结果对比观察. 心脑血管病防治, 2015, 15(2): 145-146.
13. 张先文, 张丽岩, 丁力超, 等. 基于心冲击信号的心率检测. 清华大学学报: 自然科学版, 2017, 57(7): 763-767.
14. Choi B H, Chung G S, Lee J S, et al. Slow-wave sleep estimation on a load-cell-installed bed: a non-constrained method. Physiol Meas, 2009, 30(11): 1163-1170.