生物医学工程学杂志

生物医学工程学杂志

玻璃表面可控聚乙二醇生物活性涂层构建及其血液相容性研究

查看全文

运用表面引发原子转移自由基聚合反应(SI-ATRP)在玻璃表面构建甲基丙烯酸聚乙二醇酯(PEGMA)-甲基丙烯酸缩水甘油酯(GMA)的二元嵌段共聚物(PEGMA-GMA),然后利用 GMA 中丰富的环氧基团将内皮细胞选择性多肽精氨酸-谷氨酸-天冬氨酸-缬氨酸(REDV)通过开环反应固定在 PEGMA-GMA 聚合物刷的末端。采用静态水接触角、X 射线光电子能谱(XPS)以及原子力显微镜(AFM)等对聚合物刷的结构和亲水性能进行了表征,结果证明在玻璃基材表面成功构建了 REDV 多肽修饰的二元嵌段共聚物刷;同时利用紫外-可见吸收光谱(UV-Vis)对表面固定的 REDV 进行了定量表征。最后采用复钙化凝血时间和血小板黏附实验对涂层的血液相容性进行表征,结果显示聚合物涂层具有良好的血液相容性。这种修饰多肽的聚乙二醇生物活性涂层为后续表面内皮化研究奠定了良好的前期基础。

A diblock copolymer, poly(ethylene glycol) methacrylate-block-glycidyl methacrylate (PEGMA-GMA), was prepared on glass substrate by surface-initiated atom transfer radical polymerization (SI-ATRP), and endothelial specific peptide Arg-Glu-Asp-Val (REDV) was immobilized at the end of the PEGMA-GMA polymer brush by ring opening reaction through the rich epoxy groups in the GMA. The structure and hydrophilicity of the polymer brushes were characterized by static water contact angle, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results showed that the REDV modified copolymer brushes were successfully constructed on the glass substrates. The REDV peptide immobilized onto surface was quantitatively characterized by ultraviolet–visible spectroscopy (UV-VIS). The blood compatibility of the coating was characterized by recalcification time and platelet adhesion assay. The results showed that the polymer coating had good blood compatibility. The multifunctional active polymer coating with PEGMA and peptide produced an excellent prospect in surface construction with endothelial cells selectivity.

关键词: 表面原子转移自由基聚合; 甲基丙烯酸聚乙二醇酯; 甲基丙烯酸缩水甘油酯; 活性涂层

Key words: surface-initiated atom transfer radical polymerization; poly(ethylene glycol) methacrylate; glycidyl methacrylate; active polymer coating

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Weng Yajun, Chen Junying, Tu Qiufen, et al. Biomimetic modification of metallic cardiovascular biomaterials: from function mimicking to endothelialization in vivo. Interface Focus, 2012, 2(3): 356-365.
2. Wei Y, Zhang J X, Ji Y, et al. REDV Rapamycin-loaded polymer combinations as a coordinated strategy to enhance endothelial cells selectivity for a stent system. Colloids Surf B Biointerfaces, 2015, 136: 1166-1173.
3. Pana C J, Wang J, Huang N. Preparation, characterization and in vitro anticoagulation of emodin-eluting controlled biodegradable stent coatings. Colloids Surf B Biointerfaces, 2010, 77: 155-160.
4. Chen Jialong, Cao Jianjun, Wang Juan, et al. Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization. J Colloid Interface Sci, 2012, 368(1): 636-647.
5. 魏雨, 张景迅, 范娟娟, 等. 心血管支架表面改性及应用. 生物医学工程学杂志, 2016, 33(3): 593-597.
6. Chang Hao, Liu Xiqiu, Hu Mi, et al. Substrate stiffness combined with hepatocyte growth factor modulates endothelial cell behavior. Biomacromolecules, 2016, 17(9): 2767-2776.
7. Wei Y, Ji Y, Xiao L L. Surface engineering of cardiovascular stent with endothelial cellselectivity for in vivo re-endothelialisation. Biomaterials, 2013, 34(11): 2588-2599.
8. 魏雨, 张景迅, 范娟娟, 等. 基于聚乙二醇和不同多肽构建的生物涂层及其内皮细胞选择性研究. 高分子学报, 2016, (1): 118-124.
9. Huang C F. Surface-initiated atom transfer radical polymerization for applications in sensors, non-biofouling surfaces and adsorbents. Polym J, 2016, 48(4, SI): 341-350.
10. Xu F J, Neoh K G, Kang E T. Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog Polym Sci, 2009, 34(8): 719-761.
11. Wang Jingjing, Wei Jun. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling. Appl Surf Sci, 2016, 382: 202-216.
12. Wei Yu, Zhang Jingxun, Li Haolie, et al. Multifunctional copolymer coating of polyethylene glycol, glycidyl methacrylate, and REDV to enhance the selectivity of endothelial cells. J Biomater Sci Polym Ed, 2015, 26(18): 1357-1371.
13. Li Xin, Wang Mengmeng, Wang Lei, et al. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity. Langmuir, 2013, 29(4): 1122-1128.
14. 郑军, 李丹, 袁琳, 等. 表面接枝嵌段共聚物刷实现内皮细胞的选择性黏附. 高分子学报, 2013, (8): 1108-1114.
15. Liu Yingshuai, Wang Wei, Hu Weihua, et al. Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device. Biomed Microdevices, 2011, 13(4): 769-777.
16. Iwata R, Satoh R, Iwasaki Y, et al. Covalent immobilization of antibody fragments on well-defined polymer brushes via site-directed method. Colloids Surf B Biointerfaces, 2008, 62(2): 288-298.
17. Pimpha N, Chaleawlert-umpon S, Chruewkamlow N, et al. Preparation of anti-CD4 monoclonal antibody-conjugated magnetic poly(glycidyl methacrylate) particles and their application on CD4(+) lymphocyte separation. Talanta, 2011, 84(1): 89-97.
18. Xu F J, Zhu Y, Chai M Y, et al. Comparison of ethanolamine/ethylenediamine-functionalized poly(glycidyl methacrylate) for efficient gene delivery. Acta Biomater, 2011, 7(8): 3131-3140.
19. Plouffe B D, Njoka D N, Harris J, et al. Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow. Langmuir, 2007, 23: 5050-5055.
20. Wei Yu, Ji Ying, Xiao Linlin, et al. Different complex surfaces of polyethyleneglycol (PEG) and REDV ligand to enhance the endothelial cells selectivity over smooth muscle cells. Colloids Surf B Biointerfaces, 2011, 84(2): 369-378.
21. 魏雨. 内皮细胞选择性心血管支架仿生涂层材料的研究. 杭州: 浙江大学高分子系, 2011.
22. Wu Zhaoqiang, Chen Hong, Liu Xiaoli, et al. Protein adsorption on poly(n-vinylpyrrolidone)-modified silicon surfaces prepared by surface-initiated atom transfer radical polymerization. Langmuir, 2009, 25(5): 2900-2906.
23. Xu F J, Cai Q J, Li Y L, et al. Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Biomacromolecules, 2005, 6(2): 1012-1020.