生物医学工程学杂志

生物医学工程学杂志

丝素蛋白生物硅化材料在骨组织工程学中的应用

查看全文

制备可生物降解并具有骨再生功能的支架材料是骨组织工程当前研究的重点领域。丝素蛋白具备可用作骨组织工程支架材料的许多要素,其中通过仿生方式生物矿化制备的丝素蛋白/无机复合材料与单纯丝素相比,由于具有较好的生物相容性、生物力学性能、可生物降解性以及骨诱导和传导特性,展现出更好的应用前景。本文综述了近年丝素蛋白生物硅化制备新型骨组织工程材料的研究进展,并展望了丝素蛋白生物硅化今后的发展方向。

In bone tissue engineering, fabrication of scaffold materials that are biodegradable with regenerative functions is one of the most important research fields. Silk fibroin exhibits many favorable characteristics used as scaffold materials. Among them, hybrid silk fibroin/inorganic composites prepared by biomimetic mineralization have better biocompatibility, biomechanical properties, and biodegradability. At the same time, the hybrid silk fibroin/inorganic materials have much better osteoinduction and conduction properties than silk fibroin. Here, the recent advances in the preparation of silk fibroin/silica hybrid materials by combination or biomimetic silicification are reviewed, and the future research prospects of silicification of silk fibroin are discussed.

关键词: 丝素蛋白; 生物硅化; 骨组织工程; 二氧化硅

Key words: silk fibroin; silicification; bone tissue engineering; silica

引用本文: 郑直, 宁美英, 李东. 丝素蛋白生物硅化材料在骨组织工程学中的应用. 生物医学工程学杂志, 2018, 35(4): 643-646. doi: 10.7507/1001-5515.201705029 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. 袁凯. 丝素蛋白在组织工程中的应用和降解性研究. 医学研究杂志, 2011, 40(10): 153-155.
2. 王宏昕, 李敏. 丝素蛋白作为组织工程生物材料的研究进展. 中国修复重建外科杂志, 2008, 22(2): 192-195.
3. 周婵, 刘彬, 王介平, 等. 家蚕丝素蛋白在组织工程中的应用研究进展. 中国畜牧杂志, 2013, 49(23): 91-94.
4. 孔令玲, 李延报. 丝素蛋白支架的制备及其在组织工程中的应用. 材料科学与工程学报, 2013, 31(4): 614-620.
5. Mottaghitalab F, Hosseinkhani H, Shokrgozar M A, et al. Silk as a potential candidate for bone tissue engineering. J Control Release, 2015, 215: 112-128.
6. 谢敏凯, 徐月敏. 丝素蛋白材料在组织工程中的新进展. 中国组织工程研究, 2012, 16(43): 8105-8110.
7. 陈艳雄, 陈敏, 朱谱新, 等. 丝素蛋白的研究和应用进展. 纺织科技进展, 2007, 2007(2): 13-18.
8. 施李杨, 杨明英, 朱良均. 丝素蛋白生物材料在骨修复中的应用研究进展. 蚕业科学, 2013, 39(4): 812-819.
9. Yao D, Liu H, Fan Y. Silk scaffolds for musculoskeletal tissue engineering. Exp Biol Med (Maywood), 2016, 241(3): 238-245.
10. 于同隐, 梅娜, 陈光, 等. 丝素蛋白在组织工程中的应用. 复旦学报: 自然科学版, 2003, 42(6): 828-832.
11. Nudelman F, Sommerdijk N A. Biomineralization as an inspiration for materials chemistry. Angew Chem Int Ed Engl, 2012, 51(27): 6582-6596.
12. Sailaja G S, Ramesh P, Vellappally S, et al. Biomimetic approaches with smart interfaces for bone regeneration. J Biomed Sci, 2016, 23(1): 77.
13. Melke J, Midha S, Ghosh S, et al. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 2016, 31: 1-16.
14. 王生杰, 蔡庆伟, 杜明轩, 等. 二氧化硅的仿生矿化. 化学进展, 2015, 27(2/3): 229-241.
15. Zhou Xianfeng, Zhang Nianli, Mankoci S, et al. Silicates in orthopedics and bone tissue engineering materials. J Biomed Mater Res A, 2017, 105(7): 2090-2102.
16. 程成, 邵正中, 陈新. 蚕丝蛋白与硅溶胶复合材料的研究. 高分子学报, 2008, 1(10): 974-978.
17. Hou A, Chen H. Preparation and characterization of silk/silica hybrid biomaterials by sol–gel crosslinking process. Materials Science & Engineering B, 2010, 167(2): 124-128.
18. 徐水, 张胡静, 李雯静, 等. 丝素/纳米SiO2凝胶共混膜的制备及性能测试. 蚕业科学, 2011, 37(1): 82-87.
19. 朱海霖, 吴斌伟, 冯新星, 等. 丝素蛋白/硅酸钙复合纳米纤维的结构与性能. 纺织学报, 2011, 32(6): 1-6.
20. Zhu Hailin, Wu Binwei, Feng Xinxing, et al. Preparation and characterization of bioactive mesoporous calcium silicate-silk fibroin composite films. J Biomed Mater Res B Appl Biomater, 2011, 98(2): 330-341.
21. Kharlampieva E, Kozlovskaya V, Wallet B, et al. Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites. ACS Nano, 2010, 4(12): 7053-7063.
22. Mieszawska A J, Fourligas N, Georgakoudi I, et al. Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials, 2010, 31(34): 8902-8910.
23. Ghorbanian L, Emadi R, Razavi S M, et al. Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration. Int J Biol Macromol, 2013, 58: 275-280.
24. Su Dihan, Jiang Libo, Chen Xin, et al. Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl Mater Interfaces, 2016, 8(15): 9619-9628.
25. Wong P F C, Patwardhan S V, Belton D J, et al. Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci U S A, 2006, 103(25): 9428-9433.
26. Plowright R, Dinjaski N, Zhou Shun, et al. Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification. RSC Adv, 2016, 6(26): 21776-21788.
27. Canabady-Rochelle L L, Belton D J, Deschaume O, et al. Bioinspired silicification of silica-binding peptide-silk protein chimeras: comparison of chemically and genetically produced proteins. Biomacromolecules, 2012, 13(3): 683-690.
28. Zhou S, Huang W, Belton D J, et al. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides (SiBPs). Acta Biomaterialia, 2015, 15: 173-180.
29. Belton D J, Mieszawska A J, Currie H A, et al. Silk–silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir, 2012, 28(9): 4373-4381.
30. Mieszawska A J, Nadkarni L D, Perry C C, et al. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration. Chem Mater, 2010, 22(20): 5780-5785.