生物医学工程学杂志

生物医学工程学杂志

大鼠子宫去细胞支架及其细胞外基质凝胶的制备

查看全文

本研究采用化学提取法制备大鼠子宫去细胞支架,以探究大鼠子宫细胞外基质(ECM)凝胶制备的可行性。取大鼠子宫,经 1% 十二烷基磺酸钠(SDS)、3% 曲拉通 X-100(TritonX-100)、4% 脱氧胆酸钠(SDC)溶液依次振摇,制得大鼠子宫去细胞支架。通过扫描电镜、组织化学染色、免疫组化等方法检测支架去细胞化情况。将成功制备的大鼠子宫去细胞支架经胃蛋白酶消化得 ECM 凝胶,特异性检测 ECM 凝胶中蛋白含量,测定其流变学性能。结果表明,化学提取法能有效去除细胞,完全保留支架中 ECM 蛋白成分;本研究制得的 ECM 凝胶中含有大量 ECM 蛋白,胶凝稳定,或可为体外子宫内膜构建提供合适的支架材料。

The chemical extraction method was used to prepare the rat uterine decellularized scaffolds, and to investigate the feasibility of preparing the extracellular matrix (ECM) hydrogel. The rat uterus were collected and extracted by 1%sodium dodecyl sulfate (SDS), 3% TritonX-100 and 4% sodium deoxycholate (SDC) in sequence. Scanning electron microscopy, histochemical staining and immunohistochemistry was used to assess the degree of decellularization of rat uterine scaffold. The prepared decellularized scaffold was digested with pepsin to obtain a uterine ECM hydrogel, and the protein content of ECM was determined by specific ELISA kit. Meanwhile, the mechanical characteristic of ECM hydrogel was measured. The results showed that the chemical extraction method can effectively remove the cells effectively in the rat uterine decellularized scaffold, with the ECM composition preserved completely. ECM hydrogel contains a large amount of ECM protein and shows a good stability, which provides a suitable supporting material for the reconstruction of endometrium in vitro.

关键词: 化学提取法; 子宫去细胞支架; 细胞外基质凝胶

Key words: chemical extraction method; uterine-decellularized scaffold; extracellular matrix hydrogel

引用本文: 许洁, 金冰慧, 赵应征. 大鼠子宫去细胞支架及其细胞外基质凝胶的制备. 生物医学工程学杂志, 2018, 35(2): 237-243. doi: 10.7507/1001-5515.201704070 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Zupi E, Centini G, Lazzeri L. Asherman syndrome: an unsolved clinical definition and management. Fertil Steril, 2015, 104(6): 1380-1381.
2. Campo H, Cervelló I, Simón C. Bioengineering the uterus: an overview of recent advances and future perspectives in reproductive medicine. Ann Biomed Eng, 2017, 45(7): 1710-1717.
3. Hellström M, El-Akouri C, Sihlbom, et al. Towards the development of a bioengineered uterus: comparisonof different protocols for rat uterus decellularization. Acta Biomaterials, 2014, 08(18): 5034-5042.
4. Chani B, Puri V, Sobti R C, et al. Decellularized scaffold of cryopreserved rat kidney retains its recellularization potential. PLoS One, 2017, 12(3): e0173040.
5. Ghuman H, Massensini A R, Donnelly J, et al. ECM hydrogel for the treatment of stroke: characterization of the host cell infiltrate. Biomaterials, 2016, 91(14): 166-181.
6. Wang R M, Christman K L. Decellularized myocardial matrix hydrogels: in basic research and preclinical studies. Adv Drug Deliv Rev, 2016, 96(2): 77-82.
7. 王和平, 王常勇, 江红. 子宫内膜体外构建及其应用研究进展. 生殖医学杂志, 2007, 16(1): 60-63.
8. 单铁英. 人子宫内膜的体外构建及 Ang-(1-7)和 AngⅡ对子宫内膜细胞和子宫内膜组织的影响. 石家庄: 河北医科大学, 2014.
9. Miyazaki K, Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials, 2014, 35(31): 8791-8800.
10. 安慧敏, 刘慧, 王常勇, 等. 人子宫内膜体外构建的实验研究. 生殖医学杂志, 2007, 15(2): 96-100.
11. Ott H C, Matthiesen T S, Goh S K, et al. Perfusion-decellularized matrix: using Nature's platform to engineer a bioartificial heart. Nat Med, 2008, 14(2): 213-221.
12. Raredon M S, Rocco K A, Gheorghe C P, et al. Biomimetic culture reactor for whole-lung engineering. Biores Open Access, 2016, 5(1): 72-83.
13. Pu Lei, Wu Jian, Pan Xingna, et al. Determining the optimal protocol for preparing an acellular scaffold of tissue engineered small-diameter blood vessels. J Biomed Mater Res B Appl Biomater, 2018, 106(2): 619-631.
14. Hymes J P, Klaenhammer T R. Stuck in the middle: fibronectin-binding proteins in Gram-positive bacteria. Front Microbiol, 2016, 7: 1504. DOI: 10.3389/fmicb.2016.01504.
15. Dreymueller D, Theodorou K, Donners M, et al. Fine tuning cell migration by a disintegrin and metalloproteinases. Mediators Inflamm, 2017: 9621724.
16. Massensini A R, Ghuman H, Saldin L T, et al. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater, 2015, 27(40): 116-130.
17. Freytes D O, Martin J, Velankar S S, et al. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials, 2008, 29(11): 1630-1637.
18. Brown D A, Maclellan W R, Laks H, et al. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnol Bioeng, 2007, 97(4): 962-975.
19. Davis B H, Schroeder T, Yarmolenko P S, et al. An in vitro system to evaluate the effects of ischemia on survival of cells used for cell therapy. Ann Biomed Eng, 2007, 35(8): 1414-1424.