生物医学工程学杂志

生物医学工程学杂志

基于 Simulink 的上肢康复训练人机整体建模与分析

查看全文

机器人康复训练是解决中风瘫痪患者康复训练需求的重要方法,康复机器人设定的训练参数对患者能力的适应程度是决定训练能否加快患者康复进程的重要因素。目前临床上的康复训练内容由康复医师对患者进行量表评估并结合自己的经验制定,这种经验式的训练方法在康复机器人训练过程中无法实现。为了探讨上肢康复机器人运动训练参数与患者运动能力之间的关系,本文建立了牵引式上肢康复机器人训练的 Simulink 人机整体模型,并将模型计算的人体肩关节、肘关节运动与实际动作下的肩关节、肘关节运动进行了对照。分析显示仿真结果与实验数据存在明显的相关性,从而证明了模型的准确性。进一步地,本文根据模型仿真结果拟合了人机接触端平面画圆半径与人体肩关节、肘关节主动运动自由度的线性函数关系,为临床上康复机器人制定训练目标提供了量化参考。

Robot rehabilitation has been a primary therapy method for the urgent rehabilitation demands of paralyzed patients after a stroke. The parameters in rehabilitation training such as the range of the training, which should be adjustable according to each participant’s functional ability, are the key factors influencing the effectiveness of rehabilitation therapy. Therapists design rehabilitation projects based on the semiquantitative functional assessment scales and their experience. But these therapies based on therapists’ experience cannot be implemented in robot rehabilitation therapy. This paper modeled the global human-robot by Simulink in order to analyze the relationship between the parameters in robot rehabilitation therapy and the patients’ movement functional abilities. We compared the shoulder and elbow angles calculated by simulation with the angles recorded by motion capture system while the healthy subjects completed the simulated action. Results showed there was a remarkable correlation between the simulation data and the experiment data, which verified the validity of the human-robot global Simulink model. Besides, the relationship between the circle radius in the drawing tasks in robot rehabilitation training and the active movement degrees of shoulder as well as elbow was also matched by a linear, which also had a remarkable fitting coefficient. The matched linear can be a quantitative reference for the robot rehabilitation training parameters.

关键词: Simulink 人机整体模型; 牵引式上肢康复机器人; 平面运动; 训练轨迹

Key words: human-robot global Simulink model; end-effector upper limb rehabilitation robots; planar movement; training trajectory

引用本文: 刘亚丽, 季林红. 基于 Simulink 的上肢康复训练人机整体建模与分析. 生物医学工程学杂志, 2018, 35(1): 8-14. doi: 10.7507/1001-5515.201703070 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Hu Xiaoling, Tong K Y, Song Rong, et al. Variation of muscle coactivation patterns in chronic stroke during robot-assisted elbow training. Arch Phys Med Rehabil, 2007, 88(8): 1022-1029.
2. Basteris A, Nijenhuis S M, Stienen A H, et al. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil, 2014, 11(1): 111-121.
3. Brunner I, Skouen J S, Hofstad H, et al. Virtual reality training for upper extremity in subacute stroke (VIRTUES): study protocol for a randomized controlled multicenter trial. BMC Neurol, 2014, 14(1): 186-190.
4. Cozens J A. Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Trans Rehabil Eng, 1999, 7(2): 254-256.
5. Blank A A, French J A, Pehlivan A U, et al. Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy. Curr Phys Med Rehabil Rep, 2014, 2(3): 184-195.
6. Volpe B T, Ferraro M, Lynch D, et al. Robotics and other devices in the treatment of patients recovering from stroke. Curr Atheroscler Rep, 2005, 5(6): 465-470.
7. 杨启志, 曹电锋, 赵金海. 上肢康复机器人研究现状的分析. 机器人, 2013, 35(5): 630-640.
8. Olesh E V, Yakovenko S, Gritsenko V. Automated assessment of upper extremity movement impairment due to stroke. PLoS One, 2014, 9(8): e104487.
9. 李会军, 宋爱国. 上肢康复训练机器人的研究进展及前景. 机器人技术与应用, 2006, 4: 32-36.
10. Zhang Yubo, Wang Zixi, Ji Linhong, et al. The clinical application of the upper extremity compound movements rehabilitation training robot// Proceedings of the 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. Chicago, IL, USA: 2005: 91-94.
11. Nef T, Mihelj M, Colombo G, et al. ARMin-robot for rehabilitation of the upper extremities// Proceedings of 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. Orlando, FL, USA: 2006, 3152-3157.
12. Jarrassé N, Proietti T, Crocher V, et al. Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients. Front Hum Neurosci, 2014, 8: 947-955.
13. Mihelj M, Nef T, Riener R. ARMin II-7 DoF rehabilitation robot: mechanics and kinematics// Proceedings of 2007 IEEE International Conference on Robotics and Automation. Roma, Italy: 2007: 4120-4125.
14. 李醒, 王建辉, 方晓柯. 五自由度上肢康复机器人动力学建模及仿真. 控制工程, 2012, 19(5): 823-826, 831.
15. 朱雪枫. 五自由度上肢康复机器人数学建模与仿真. 沈阳: 东北大学, 2011.
16. Behnke Robert S. Kinetic anatomy. Champaign: Human Kinetics, 2006.
17. Maciejasz P, Eschweiler J, Gerlach-Hahn K, et al. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil, 2014, 11(1): 3-10.
18. Valentin G, Luminita G, Mihai D, et al. A virtual system for simulation of human upper limb. Lecture Notes in Engineering & Computer Science, 2009, 2177(1): 101-104.
19. Dipietro L, Krebs H I, Fasoli S E, et al. Changing motor synergies in chronic stroke. J Neurophysiol, 2007, 98(2): 757-768.