生物医学工程学杂志

生物医学工程学杂志

基于生理步态的智能膝关节结构设计及训练方法研究

查看全文

智能膝关节对膝上截肢患者生理步态的实现具有重要的影响。通过分析正常人生理步态,设计新型液压阻尼膝关节结构,提出站立相和摆动相的训练方法。并利用下肢功能模拟与测评装置,对设计膝关节进行模拟测试,确定假肢膝关节控制目标为摆动相最大弯曲角度介于 60~70°。在 0.8、1.2、1.8 m/s 三种行走速度下,所设计膝关节阻尼器阀门闭合度为 0% 时,摆动相最大弯曲角度分别为(86±2)°、(91±3)°、(97±3)°,闭合度发生变化时,最大摆动弯曲角度均可调整到 60~70° 之间,且所需阀门闭合度百分比分别为 25%、40%、70%,揭示了智能膝关节实现生理步态阻尼调整的规律。

The performance of intelligent prosthetic knee has an important effect on the realization of physiological gait of transfemoral amputees. A new type of single axis hydraulic damping knee prosthesis was designed based on the analysis of physiological gait. The training methods of the stance and swing phase were proposed. Knee prosthesis test was done through simulation and measurement device. The control target of peak flexion angle during swing of knee prosthesis is chosen to be 60–70°. When the damper valve closure was 0%, maximum swing-phase knee flexion angle of knee prosthesis were (86±2)°, (91±3)° and (97±3)° with the speed of 0.8 m/s, 1.2 m/s and 1.8 m/s, respectively. Once the valve closure was changed, maximum swing-phase knee flexion angle with different speeds could be adjusted between 60° and 70° and the required valve closure percentage were separately 25%, 40% and 70%. The damping adjustment law of intelligent knee prosthesis to achieve physiological gait was revealed.

关键词: 生理步态; 智能膝关节; 阀门闭合度; 阻尼调整; 模拟测试

Key words: physiological gait; intelligent knee prosthesis; valve closure; damping adjustment; simulation test

引用本文: 曹武警, 魏小东, 赵伟亮, 孟巧玲, 喻洪流. 基于生理步态的智能膝关节结构设计及训练方法研究. 生物医学工程学杂志, 2018, 35(5): 733-739. doi: 10.7507/1001-5515.201703069 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 曹武警, 喻洪流, 胡杰, 等. 基于不同信号源的智能膝关节控制方法研究. 中国康复医学杂志, 2016, 31(10): 1129-1132.
2. 李瑞莲. 上下肢主被动康复机器人的设计. 郑州: 郑州大学, 2016.
3. 魏艳琴, 曹学军, 杨平, 等. 下肢截肢者穿戴假肢行走能力的评价. 中国康复理论与实践, 2016, 22(7): 855-859.
4. 顾洪, 李伟达, 李娟. 智能膝关节假肢研究现状及发展趋势. 中国康复理论与实践, 2016, 22(9): 1080-1085.
5. 王加跃. 面向智能假肢控制的下肢关节运动模型研究. 苏州: 苏州大学, 2015.
6. Prinsen E C, Nederhand M J, Sveinsdóttir H S, et al. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial. Gait Posture, 2017, 51: 254-260.
7. 王人成, 沈强, 金德闻. 假肢智能膝关节研究进展. 中国康复医学杂志, 2007, 22(12): 1093-1094.
8. 王振平, 喻洪流, 杜妍辰, 等. 假肢智能膝关节的研究现状和发展趋势. 生物医学工程学进展, 2015, 36(3): 159-163.
9. 张丹. 智能仿生腿步速测量与步速控制系统研究. 长沙: 中南大学, 2014.
10. Lambrecht B G A, Kazerooni H. Design of a semi-active knee prosthesis// IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 639-645.
11. Herr H, Wilkenfeld A. User-adaptive control of a magnetorheological prosthetic knee. Industrial Robot, 2003, 30(1): 42-55.
12. Bonnet X, Pillet H, Fodé P, et al. Gait analysis of a transfemoral amputee with a hydraulic polycentric knee prosthesis. Computer Methods in Biomechanics & Biomedical Engineering, 2009, 12(1): 59-60.
13. Orhanli T, Yilmaz A. Application and comparison of finite state control of above-knee prosthesis with pneumatic cylinder at different phases// Signal Processing and Communications Applications Conference. Malatya, Turkey, 2015: 2234-2237.
14. 喻洪流, 钱省三, 沈凌, 等. 基于小脑模型神经网络控制的步速跟随智能膝上假肢. 中国组织工程研究与临床康复, 2007, 11(31): 6233-6235.
15. 李伟. 智能假肢膝关节工作机理研究及样机设计. 南京: 东南大学, 2012.
16. 杨敏, 刘启栋, 王爱明, 等. 摆动式缸体四杆机构假肢智能膝关节的设计//第四届北京国际康复论坛论文集. 北京, 2009: 603-607.
17. Maqbool H F, Husman M A, Awad M I, et al. A real-time gait event detection for lower limb prosthesis control and evaluation. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(9): 1500-1509.
18. 周小华, 李娟, 李伟达, 等. 一种基于多传感器的步态相位实时检测系统. 传感器与微系统, 2016, 35(2): 91-93.
19. Gouwanda D, Gopalai A A. A robust real-time gait event detection using wireless gyroscope and its application on normal and altered gaits. Med Eng Phys, 2015, 37(2): 219-225.
20. Inman V T, Ralston H J, Todd F. Human walking. Baltimore: Williams and Wilkins, 1981.