生物医学工程学杂志

生物医学工程学杂志

基于 theta-gamma 相位幅值耦合的脑疲劳信息传递整合机制研究

查看全文

脑疲劳是长期脑力活动产生主观疲劳的状态,是影响脑力工作者健康的核心问题,但其对大脑信息传递整合过程的影响至今尚不清楚。因此本文采用相位–幅值耦合(PAC)方法对脑疲劳前后 theta 节律和 gamma 节律的脑电进行研究,以更好地解释脑疲劳对大脑信息传递机制的影响。实验采用 4 小时专业科技英语阅读诱发脑疲劳,利用脑电仪记录了 14 名男性在校本科生志愿者在脑疲劳前后的脑电信号。使用相位–幅值耦合方法进行分析,并对结果进行了t 检验。结果显示,全脑区域 90% 以上电极的 theta 相位共同调制右侧中央区和右侧顶叶区电极的 gamma 幅值,并且这种耦合作用在脑疲劳后显著下降(P < 0.05)。本研究表明 theta-gamma 之间的相位–幅值耦合变化能更好地解释脑疲劳对大脑信息传递整合机制的影响,有望成为一种新的脑疲劳检测指标,同时也为神经调控缓解脑疲劳的效果提供了评价手段。

Mental fatigue is a subjective fatigue state caused by long-term brain activity, which is the core of health problems among brainworkers. However, its influence on the process of brain information transmission integration is not clear. In this paper, phase amplitude coupling (PAC) between theta and gamma rhythm was used to study the electroencephalogram (EEG) data recorded before and after mental fatigue, so as to explain the effect of mental fatigue on brain information transmission mechanism. The experiment used a 4-hour professional English reading to induce brain fatigue. EEG signals of 14 male undergraduate volunteers before and after mental fatigue were recorded by Neuroscan EEG system. Phase amplitude coupling value was calculated and analyzed. t test was used to compare the results between two states. The results showed that theta phase of more than 90% of the electrodes in the whole brain area jointly modulated gamma amplitude of the right central area and the right parietal area, and the coupling effect among different brain regions significantly decreased (P < 0.05) when participants had felt mental fatigue. This paper shows that phase amplitude coupling can explain the influence of mental fatigue on information transmission mechanism. It could be an important indicator for mental fatigue detection. On the other hand, the results also provide a new measure to evaluate the effect of neuromodulation in relieving mental fatigue.

关键词: 脑疲劳; 相位-幅值耦合; 脑电

Key words: mental fatigue; phase amplitude coupling; electroencephalogram

引用本文: 杨硕, 冀亚坤, 李润泽, 王磊, 徐桂芝. 基于 theta-gamma 相位幅值耦合的脑疲劳信息传递整合机制研究. 生物医学工程学杂志, 2018, 35(5): 672-678. doi: 10.7507/1001-5515.201703067 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Boksem M A S, Tops M. Mental fatigue: Costs and benefits. Brain Res Rev, 2008, 59(1): 125-139.
2. Boksem M A S, Meijman T F, Lorist M M. Effects of mental fatigue on attention: An ERP study. Cogn Brain Res, 2005, 25(1): 107-116.
3. Boksem M A S, Kostermans E, Tops M, et al. Individual differences in asymmetric resting-state frontal cortical activity modulate ERPs and performance in a global-local attention task. J Psychophysiol, 2012, 26(2): 51-62.
4. 张崇, 郑崇勋, 裴晓梅, 等. 生理性精神疲劳的多参数脑电功率谱分析. 生物医学工程学杂志, 2009, 26(1): 162-166, 172.
5. Jirsa V, Müller V. Cross-frequency coupling in real and virtual brain networks. Front Comput Neurosci, 2013, 7(78): 78-103.
6. Liu Jianping, Zhang Chong, Zheng Chongxun. EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters. Biomed Signal Process Control, 2010, 5(2): 124-130.
7. Käthner I, Wriessnegger S C, Müller-Putz G R, et al. Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biol Psychol, 2014, 102(5): 118-129.
8. 程宁, 徐霞霞, 李群, 等. 神经振荡交叉节律耦合的生理学意义及在神经工程基础研究中的应用. 纳米技术与精密工程, 2015, 13(5): 324-332.
9. Saleh M, Reimer J, Penn R, et al. Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron, 2010, 65(4): 461-471.
10. Besle J, Lakatos P, Schevon C A, et al. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 2008, 320(5872): 110-113.
11. Holz E M, Glennon M, Prendergast K, et al. Theta-gamma phase synchronization during memory matching in visual working memory. Neuroimage, 2010, 52(1): 326-335.
12. Lisman J E, Jensen O. The theta-gamma neural code. Neuron, 2013, 77(6): 1002-1016.
13. Belluscio M A, Mizuseki K, Schmidt R A, et al. Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci, 2012, 32(2): 423-435.
14. Tort A B, Kramer M A, Thorn C, et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A, 2008, 105(51): 20517-20522.
15. Pahor A, Jaušovec N. Theta–gamma cross-frequency coupling relates to the level of human intelligence. Intelligence, 2014, 46: 283-290.
16. Foster B L, Parvizi J. Resting oscillations and cross-frequency coupling in the human posteromedial cortex. Neuroimage, 2012, 60(1): 384-391.
17. Axmacher N, Henseler M M, Jensen O, et al. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci U S A, 2010, 107(7): 3228-3233.
18. Cohen M X, Elger C E, Fell J. Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making. J Cogn Neurosci, 2009, 21(2): 390-402.
19. Canolty R T, Knight R T. The functional role of cross-frequency coupling. Trends Cogn Sci, 2010, 14(11): 506-515.
20. Kendrick K M, Zhan Yang, Fischer H, et al. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex. BMC Neurosci, 2011, 12(1): 55-78.
21. 李群, 程宁, 张涛. 基于神经网络的振荡模式分析及其应用. 生理学报, 2015, (2): 143-154.
22. Mormann F, Fell J, Axmacher N, et al. Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus, 2005, 15(7): 890-900.
23. Tort A B, Komorowski R W, Manns J R, et al. Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci U S A, 2009, 106(49): 20942-20947.
24. van der Linden D, Frese M, Meijman T F. Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychol (Amst), 2003, 113(1): 45-65.
25. 杨博. 长时间持续警戒任务下脑力疲劳对前注意和注意加工能力影响的ERP研究. 西安: 第四军医大学, 2013.
26. Antonakakis M, Dimitriadis S I, Zervakis M, et al. Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury. Int J Psychophysiol, 2016, 102: 1-11.
27. Sun Y, Giacobbe P, Tang C W, et al. Deep brain stimulation modulates gamma oscillations and theta-gamma coupling in treatment resistant depression. Brain Stimul, 2015, 8(6): 1033-1042.