生物医学工程学杂志

生物医学工程学杂志

基于最大长序列的听觉诱发电位噪声抑制能力分析

查看全文

最大长序列(m 序列)是在高刺激率条件下研究听觉诱发电位(AEP)线性/非线性成分的一种有效手段。但在实用中如何评估 m 序列的阶数选择对噪声抑制能力的影响是有待明确的问题。本研究主要采用两种类型实测数据评估 m 序列噪声抑制。根据 m 序列互相关法在去卷积计算过程中的两个计算步骤,即叠加平均和互相关,分别估算不同阶数(5~12 阶)条件下自发脑电噪声抑制比,并选择 7 阶和 9 阶 m 序列进行非线性 AEP 实验。结果表明,m 序列对自发脑电的噪声抑制比与随机噪声条件下的理论值完全符合,证实噪声抑制比主要取决于序列的总长度或总的记录时间。对于 7 阶和 9 阶 m 序列的线性/非线性成分进行相似性比较,提示 AEP 成分对阶数不敏感。本研究提供了一种选择 m 序列的更全面的解决方案,可更好地促进基于 m 序列的非线性 AEP 的应用。

The maximum length sequence (m-sequence) has been successfully used to study the linear/nonlinear components of auditory evoked potential (AEP) with rapid stimulation. However, more study is needed to evaluate the effect of the m-sequence order in terms of the noise attenuation performance. This study aimed to address this issue using response-free electroencephalogram (EEG) and EEGs with nonlinear AEPs. We examined the noise attenuation ratios to evaluate the noise variation for the calculations of superimposed averaging and cross-correlation, respectively, which constitutes the main process in the deconvolution method using the dataset of spontaneous EEGs to simulate the cases of different orders (order 5 to 12) of m-sequences. And an experiment using m-sequences of order 7 and 9 was performed in true cases with substantial linear and nonlinear AEPs. The results demonstrate that the noise attenuation ratio is well agreed with the theoretical value derived from the properties of m-sequences on the random noise condition. The comparison of waveforms for AEP components from two m-sequences showed high similarity suggesting the insensitivity of AEP to the m-sequence order. This study provides a more comprehensive solution to the selection of m-sequences which will facilitate the feasible application on the nonlinear AEP with m-sequence method.

关键词: 听觉诱发电位; 最大长序列; 噪声抑制

Key words: auditory evoked potential; maximum length sequence; noise attenuation

引用本文: 陈韵儿, 詹长安, 彭贤, 符秋养, 王涛. 基于最大长序列的听觉诱发电位噪声抑制能力分析. 生物医学工程学杂志, 2018, 35(2): 266-272. doi: 10.7507/1001-5515.201703065 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Eysholdt U, Schreiner C. Maximum length sequence—A fast method for measuring brain-stem evoked responses. Audiology, 1982, 21(3): 242-250.
2. Burkard R, Jomes S, Jones T. Conventional and cross-correlation brain-stem auditory evoked responses in the white leghorn click: Rate manipulations. Journal of the Acoustical Society of America, 1994, 95(4): 2136-2144.
3. Shi Y, Hecox K E. Nonlinear system identification by m-pulse sequence: Application to brainstem auditory evoked response. IEEE Trans Biomed Eng, 1991, 38(9): 834-845.
4. Lasky R E, Veen B D V, Marier M M. Nonlinear functional modeling of scalp recorded auditory evoked responses to maximum length sequences. Hearing Research, 1998, 120(1/2): 133-142.
5. March R R. Signal to noise constraints on maximum length sequence auditory brain stem response. Ear and Hearing, 1992, 13(6): 396-400.
6. Thornton A R D. High rate otoacoustic emissions. Journal of the Acoustical Society of America, 1993, 94(1): 132-136.
7. Thornton A R D. Click-evoked otoacoustic emissions: New techniques and applications. British Journal of Audiology, 1993, 27(2): 109-115.
8. Bohorquez J, Ozdamar O. Signal to noise ratio analysis of maximum length sequence deconvolution of overlapping evoked potentials. Journal of the Acoustical society of America, 2006, 119( 1): 2881-2888.
9. Korenberg M J, Hunter I W. The identification of nonlinear biological systems: Wiener kernel approaches. Annals of Biomedical Engineering, 1990, 18(6): 629-654.
10. Lee Y W, Schetzen M. Measurement of Wiener kernels of a non-linear system by cross-correlation. International Journal of Control, 1965, 2(3): 237-254.
11. Sutter E E. A practical non-stochastic approach to nonlinear time-domain analysis. Advanced Methods of Physiological System Modeling, 1987, 1: 303-315.
12. 吕辉, 何晶, 王刚. 伪随机序列中本原多项式生成算法. 计算机工程, 2004, 30(16): 108-109, 165.
13. Barker H A, Pradisthayon T. High-order autocorrelation functions of pseudorandom signals based on m sequences. Proceedings of the Institution of Electrical Engineers, 1970, 117(9): 1857-1863.
14. Peng Xian, Chen Yuner, Wang Tao et al. Noise attenuation estimation for maximum length sequences in deconvolution process of auditory evoked potentials. Computational and Mathematical Methods in Medicine, 2017, 2017: 3927486-3927495.
15. Schimmel H. The (±) reference: Accuracy of estimated mean components in average response studies. Science, 1967, 157(3784): 92-94.
16. 黄召辉, 林霖, 王涛. 最大长序列诱发听性脑干反应的线性与非线性成分引出率和稳定性分析. 生物医学工程学报, 2016, 35(2): 148-154.
17. Hecox K E, Cone B, Blaw M E. Brainstem auditory evoked response in the diagnosis of pediatric neurologic diseases. Neurology, 1981, 31(7): 832-840.
18. Hu Jinyan, Yan Gang, Wang Tao. Identifying odd/even-order binary kernel slices for a nonlinear system using inverse repeat m-sequences Computational and Mathematical Methods in Medicine, 2015, 2015(3): 454638-454647.