生物医学工程学杂志

生物医学工程学杂志

基于脊髓内功能电激励的大鼠后肢运动选择性控制

查看全文

脊髓内功能电激励提供了一种恢复脊髓损伤患者运动功能的途径。本研究的目标是在大鼠脊髓上确定诱发后肢不同动作的区域,对支配相应动作的区域进行归一化描述,并验证脊髓内功能电激励能够用于后肢运动功能恢复。实验中利用了三维扫描式功能电激励技术对大鼠脊髓腰骶段进行刺激。结果表明,对腰骶段脊髓腹侧进行电刺激能够产生单关节或多关节的协调运动,合理选择刺激位点能够诱发后肢多种不同动作,且后肢运动向量图覆盖后肢运动的矢状平面的各个方向。本文绘制了大鼠脊髓运动功能图谱,对相关动作的控制区域进行归一化描述,为后续实验中电极植入位点的确定提供指导。

Functional electronic stimulation (FES) may provide a means to restore motor function in patients with spinal cord injuries. The goal of this study is to determine the regions in the spinal cord controlling different hindlimb movements in the rats. Normalization was used for the regions dominating the corresponding movements. It has been verified that FES can be used in motor function recovery of the hindlimb. The spinal cord was stimulated by FES with a three-dimensional scan mode in experiments. The results show that stimulation through the electrodes implanted in the ventral locations of the lumbosacral enlargement can produce coordinated single- and multi-joint hindlimb movements. A variety of different hindlimb movements can be induced with the appropriate stimulation sites, and movement vectors of the hindlimb cover the full range of movement directions in the sagittal plane of the hindlimb. This article drew a map about spinal cord motor function of the rat. The regions in the spinal cord which control corresponding movements are normalized. The data in the study provide guidance about the location of electrode tips in the follow-up experiments.

关键词: 功能电激励; 运动控制; 脊髓损伤

Key words: functional electronic stimulation; control of movement; spinal cord injury

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Nataraj R, Audu M L, Triolo R J. Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury. Med Eng Phys, 2017, 42: 13-25.
2. Holinski B J, Mazurek K A, Everaert D G, et al. Intraspinal microstimulation produces over-ground walking in anesthetized cats. J Neural Eng, 2016, 13(5): 056016.
3. Li Yan, Alam M, Guo Shanshan, et al. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals. J Neuroeng Rehabil, 2014, 11(1): 1-12.
4. Gerasimenko Y P, Avelev V D, Nikitin O A, et al. Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol, 2003, 33(3): 247-254.
5. Gerasimenko Y P, Lavrov I A, Bogacheva I N, et al. Formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord. Neurosci Behav Physiol, 2005, 35(3): 291-298.
6. Musienko P, van den Brand R, Maerzendorfer O, et al. Combinatory electrical and pharmacological neuroprosthetic interfaces to regain motor function after spinal cord injury. IEEE Trans Biomed Eng, 2009, 56(11): 2707-2711.
7. Mushahwar V K, Horch K W. Interleaved dual-channel stimulation of the ventral lumbo-sacral spinal cord reduces muscle fatigue// International Functional Electrical Stimulation Society (IFESS) 5th Triennial Neuroprostheses: Motor Syst. V, 1997. Burnaby, Canada, 1997.
8. Mushahwar V K, Saigal R. Spinal cord stimulation for restoration of locomotion// Proceedings of the Second Joint EMBS/BMES Conference, 2002. 24th Annual Conference of the Engineering in Medicine and Biology Society and the Annual Fall Meeting of the Biomedical Engineering Society. Houston, USA: IEEE, 2002, 3: 2041-2042.
9. Huang Wei, Shen Xiaoyan, Huang Tianpeng. Experimental research on the reference coordinates for functional localization of spinal Cord// The 6th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). Shanghai, China: The Gordon Life Science Institute, 2012: 245-248..
10. Bamford J A, Putman C T, Mushahwar V K. Intraspinal microstimulation preferentially recruits fatigue-resistant muscle fibres and generates gradual force in rat. J Physiol, 2005, 569(3): 873-884.