生物医学工程学杂志

生物医学工程学杂志

位姿对支架虚拟释放结果影响的数值模拟研究

查看全文

目前关于血管支架扩张的有限元分析并未将支架释放位姿这一因素对扩张结果的影响考虑在内。本研究利用 Pro/E 软件建立了支架和血管模型,通过 ABAQUS 软件构建了 5 种有限元装配模型,分别为 0 度无偏心模型、3 度无偏心模型、5 度无偏心模型、0 度轴向偏心模型和 0 度径向偏心模型,分为角度和偏心两组实验进行扩张模拟。计算了各模型的轴向缩短率、径向回弹率、狗骨头率等力学参数,通过比较分析,得出支架虚拟释放时的角度、偏心对数值模拟的影响。计算得到 5 种模型支架扩张后的残余狭窄率分别为 38.3%、38.4%、38.4%、35.7%、38.2%。研究表明位姿对数值模拟结果的影响较小,在对结果精度要求不高的情况下可以忽略这种影响,采用 0 角度无偏心的基本模型进行扩张模拟。

The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

关键词: 有限元分析; 血管支架; 数值模拟; 力学性能

Key words: finite element analysis; endovascular stent; numerical simulation; mechanical properties

引用本文: 李婧, 彭坤, 崔新阳, 付文宇, 乔爱科. 位姿对支架虚拟释放结果影响的数值模拟研究. 生物医学工程学杂志, 2018, 35(2): 214-218. doi: 10.7507/1001-5515.201703013 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 胡大一, 施仲伟. 心血管疾病防治的新证据、新目标和新策略——美国心脏学院 2005 年科学大会热点报道. 中华医学杂志, 2005, 85(17): 1222-1223.
2. Lim S S, Gaziano T A, Gakidou E, et al. Prevention of cardiovascular disease in high-risk individuals in low-income and middle-income countries: health effects and costs. The Lancet, 2007, 370(964): 2054-2062.
3. Wu W, Petrini L, Gastaldi D, et al. Finite element shape optimization for biodegradable magnesium alloy stents. Ann Biomed Eng, 2010, 38(9): 2829-2840.
4. Whitcher F D. Simulation of in vivo loading conditions of nitinol vascular stent structures. Comput Struct, 1997, 64(5/6): 1005-1011.
5. Walke W, Paszenda Z, Filipiak J. Experimental and numerical biomechanical analysis of vascular stent. J Mater Process Technol, 2005, 164–165: 1263-1268.
6. Migliavacca F, Petrini L, Montanari V, et al. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med Eng Phys, 2005, 27(1): 13-18.
7. Migliavacca F, Petrini L, Colombo M, et al. Mechanical behavior of coronary stents investigated through the finite element method. J Biomech, 2002, 35(6): 803-811.
8. Auriccho F, Di Loreto M, Sacco E. Finite element analysis of a stenotic artery revascularization through a stent insertion. Comput Methods Biomech Biomed Engin, 2001, 4(3): 249-263.
9. Zahedmanesh H, Kelly D J, Lally C. Simulation of a balloon expandable stent in a realistic coronary artery-determination of the optimum modelling strategy. J Biomech, 2010, 43(11): 2126-2132.
10. Takashima K, Kitou T, Mori K, et al. Simulation and experimental observation of contact conditions between stents and artery models. Med Eng Phys, 2007, 29(3): 326-335.
11. Wu Wei, Wang Weiqiang, Yang Dazhi, et al. Stent expansion in curved vessel and their interactions: A finite element analysis. J Biomech, 2007, 40(11): 2580-2585.
12. 徐江, 杨杰, 杨基, 等. 基于医学影像学的心血管支架力学性能分析. 西南交通大学学报, 2016, 51(1): 201-208.
13. 李红霞, 张艺浩, 王希诚. 基于有限元模拟的支架扩张、血流动力学及支架疲劳分析. 医用生物力学, 2012, 27(2): 178-185.
14. Gu Linxia, Zhao Shijia, Muttyam A K, et al. The relation between the arterial stress and restenosis rate after coronary stenting. J Med Device, 2010, 4(3): 1-7.
15. 王文雯, 冯海全, 王晓, 等. 不锈钢冠脉支架体外耦合扩张变形行为研究. 生物医学工程学杂志, 2013, 30(5): 1027-1032.
16. 冯海全, 孙丽丽, 韩青松, 等. 狭窄血管内支架变形行为及力学性能模拟研究. 功能材料, 2015, 46(22): 22085-22089, 22094.
17. Huang Yuan, Teng Zhongzhao, Sadat U, et al. The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: Comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses. J Biomech, 2014, 47(6): 1465-1471.
18. Holzapfel G A, Mulvihill J J, Cunnane E M. Computational approaches for analyzing the mechanics of atherosclerotic plaques: A review. J Biomech, 2014, 47(4, SI): 859-869.
19. Conway C, McGarry J P, McHugh P E. Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Ann Biomed Eng, 2014, 42(12): 2425-2439.
20. 任庆帅, 任希力, 彭坤, 等. 血管支架在真实狭窄血管模型中扩张过程的模拟研究. 医用生物力学, 2015, 30(6): 488-494.
21. 林峰, 刘祥坤, 黄男男, 等. 基于有限元技术的镍钛金属支架的优化设计. 中国医疗器械杂志, 2014, 38(2): 98-101.
22. Li Hongxia, Qiu Tianshuang, Zhu Bao, et al. Design optimization of coronary stent based on finite element models. Scientific World Journal, 2013, 2013(5): 630243.
23. LaDisa J F, Jr, Olson L E, Guler I, et al. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J Appl Physiol, 2004, 97(1): 424-430.
24. 李景植, 华扬贾, 凌云, 等. 超声评估椎动脉起始段支架置人后残余狭窄及支架位置对其的影响. 中国脑血管病杂志, 2012, 9(11): 577-580.