生物医学工程学杂志

生物医学工程学杂志

靶向捕获内皮祖细胞磁性纳米粒子的生物学修饰及其细胞相容性评价

查看全文

采用共价接枝将 CD34 抗体接枝到聚乙二醇修饰的四氧化三铁磁性纳米粒子上,构建具有 CD34 抗体与 PEG 共同修饰的功能型磁性纳米粒子。通过红外检测(FT-IR)、纳米粒子粒径分析(动态光散射和透射电子显微镜)等方法对修饰后的磁性纳米粒子进行检测,并将其与内皮祖细胞(EPCs)共混培养,评价纳米粒子的细胞相容性以及对 EPCs 短时间的结合效果,然后在动态外加磁场的作用下评价修饰后磁性纳米粒子对 EPCs 的定向引导效果。结果表明,CD34 抗体成功修饰到磁性纳米粒子表面,修饰后的纳米粒子在一定的浓度范围内有较好的细胞相容性,短时间对 EPCs 具有较好的识别结合作用,并且能在外加磁场作用下初步实现在动态环境下对 EPCs 的定向引导。

Immobilization of CD34 antibody on ferroferric oxide magnetic nanoparticles was achieved by the traditional carboxyl-amine conjugation reaction. Fourier transform infrared spectroscopy (FT-IR), nanoparticle size analysis (dynamic light scattering and transmission electron microscope), and other testing methods were used to detect the surface modified magnetic nanoparticles. The endothelial progenitor cells (EPCs) were cultured with the surface modified magnetic nanoparticles to evaluate cell compatibility and the combination effect of nanoparticles on EPCs in a short period of time. Directional guide of the surface modified magnetic nanoparticles to EPCs was evaluated under applied magnetic field and simulated dynamic flow condition. The results showed that the magnetic nanoparticles were successfully modified with CD34 antibody, which had good cell compatibility within a certain range of the nanoparticle concentrations. The surface modified nanoparticles can combine with EPCs effectively in a short time, and those nanoparticles combined EPCs can be directional guided under the magnetic field in the dynamic flow environment.

关键词: CD34 抗体; 四氧化三铁; 内皮祖细胞; 定向引导

Key words: CD34 antibody; ferroferric oxide; endothelial progenitor cells; directional guide

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Wu Liheng, Mendoza-Garcia A, Li Qing, et al. Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev, 2016, 116(18, SI): 10473-10512.
2. Kyrtatos P G, Lehtolainen P, Junemann-Ramirez M, et al. Magnetic tagging increases delivery of circulating progenitors in vascular injury. JACC Cardiovasc Interv, 2009, 2(8): 794-802.
3. Cheng Ke, Li Taosheng, Malliaras K, et al. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res, 2010, 106(10): 1570-1581.
4. Vandergriff A C, Hensley T M, Henry E T, et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials, 2014, 35(30): 8528-8539.
5. Adamo R F, Fishbein I, ZHANG Kehan, et al. Magnetically enhanced cell delivery for accelerating recovery of the endothelium in injured arteries. J Control Release, 2016, 222: 169-175.
6. Landázuri N, Tong Sheng, Suo Jin, et al. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles. Small, 2013, 9(23): 4017-4026.
7. Vosen S, Rieck S, Heidsieck A, et al. Vascular repair by circumferential cell therapy using magnetic nanoparticles and tailored magnets. ACS Nano, 2016, 10(1): 369-376.
8. Sun C, Lee J S, Zhang Miqin. Magnetic nanoparticles in Mr imaging and drug delivery. Adv Drug Deliv Rev, 2008, 60(11): 1252-1265.
9. Ito A, Shinkai M, Honda H, et al. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng, 2005, 100(1): 1-11.