生物医学工程学杂志

生物医学工程学杂志

神经元功能网络的度量及性能分析

查看全文

网络的度量是复杂网络理论在神经元集群信息处理机制解析中的重要研究内容之一。针对神经元功能网络的定量度量问题,系统分析了聚类系数、全局效率、特征路径长度及传递性等度量指标与网络拓扑连接变化的定量描述关系。基于锋电位发放序列构建了神经元功能网络,仿真研究表明,构建的网络可以有效表征神经元之间的连接关系。利用鸽子弓状皮质尾外侧区(NCL)实测数据,研究了神经元功能网络对鸽子运动行为的编码特性。研究表明,NCL 区神经元功能网络可以有效编码鸽子的运动行为,而且四种度量指标在鸽子左转、直行和右转等不同行为时具有显著差异。研究结果表明本文的神经元功能网络构建方法可行,对于解析大脑神经信息处理机制具有较高的应用价值。

The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.

关键词: 神经元功能网络; 锋电位序列; 度量指标; 弓状皮质尾外侧区

Key words: functional neural network; spike train; measure index; nidopallium caudolaterale

引用本文: 李珊, 刘新玉, 陈艳, 万红. 神经元功能网络的度量及性能分析. 生物医学工程学杂志, 2018, 35(2): 258-265. doi: 10.7507/1001-5515.201609010 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Sporns O. Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci, 2014, 17(5): 652-660.
2. 孙俊峰, 洪祥飞, 童善保. 复杂脑网络研究进展——结构、功能、计算与应用. 复杂系统与复杂性科学, 2010, 7(4): 74-90.
3. Watts D J, Strogatz S H. Collective dynamics of 'small-world' network. Nature, 1998, 393(6684): 440-442.
4. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 2010, 52(3): 1059-1069.
5. 左西年, 张喆, 贺永, 等. 人脑功能连接组: 方法学、发展轨迹和行为关联. 科学通报, 2012, 57(35): 3399-3413.
6. Lu Hu, Yang Shengtao, Lin Longnian, et al. Prediction of rat behavior outcomes in memory tasks using functional connections among neurons. PloS One, 2013, 8(9): e74298.
7. Xie Jiacun, Bai Wenwen, Liu Tiaotiao, et al. Functional connectivity among spike trains in neural assemblies during rat working memory task. Behav Brain Res, 2014, 274: 248-257.
8. Xie Jue, Padoa-Schioppa C. Neuronal remapping and circuit persistence in economic decisions. Nat Neurosci, 2016, 19(6): 855-861.
9. Oba S, Nakae K, Ikegaya Y, et al. Empirical Bayesian significance measure of neuronal spike response. BMC Neurosci, 2016, 17(1): 1-21.
10. Poli D, Pastore V P, Martinoia S, et al. From functional to structural connectivity using partial correlation in neuronal assemblies. J Neural Eng, 2016, 13(2):026023.
11. Sporns O. Structure and function of complex brain networks. Dialogues Clin Neurosci, 2013, 15(3):247-262.
12. Izhikevich E M. Simple model of spiking neurons. IEEE Trans Neural Networks, 2003, 14(6): 1569-1572.
13. 万红, 张超, 刘新玉, 等. 波形特征的高斯混合模型锋电位分类算法. 中国生物医学工程学报, 2016, 35(4): 402-410.