生物医学工程学杂志

生物医学工程学杂志

拉曼光谱结合偏最小二乘法分析大鼠血液中紫杉醇含量

查看全文

利用偏最小二乘法(PLS)结合拉曼光谱技术,建立了血液中紫杉醇含量的预测模型。本实验利用拉曼光谱对 312 个样本进行了扫描,采用高效液相色谱技术(HPLC)对血液中紫杉醇含量进行了常规分析,利用蒙特卡罗偏最小二乘法(MCPLS)剔除异常样本,确定了校准集和预测集,采用可移动窗口偏最小二乘法(MWPLS)以逼近度(Da)为指标优化了最佳预处理方法、波长变量和隐变量数等参数,并最终建立了紫杉醇的预测模型。其校准集和预测集的预测值与真实值之间的相关系数(Rc2Rp2)分别为 0.933 1 和 0.926 4。最后对预测模型进行了独立验证实验,结果表明 20 个验证样本的相关误差为 9.36%±2.03%,表明模型具有很好的拟合度和预测能力。

Partial least square (PLS) combining with Raman spectroscopy was applied to develop predictive models for plasma paclitaxel concentration detection. In this experiment, 312 samples were scanned by Raman spectroscopy. High performance liquid chromatography (HPLC) was applied to determine the paclitaxel concentration in 312 rat plasma samples. Monte Carlo partial least square (MCPLS) method was successfully performed to identify the outliers and the numbers of calibration set. Based on the values of degree of approach (Da), moving window partial least square (MWPLS) was used to choose the suitable preprocessing method, optimum wavelength variables and the number of latent variables. The correlation coefficients between reference values and predictive values in both calibration set (Rc2) and validation set (Rp2) of optimum PLS model were 0.933 1 and 0.926 4, respectively. Furthermore, an independent verification test was performed on the prediction model. The results showed that the correlation error of the 20 validation samples was 9.36%±2.03%, which confirmed the well predictive ability of established PLS quantitative analysis model.

关键词: 拉曼光谱; 偏最小二乘法; 紫杉醇

Key words: Raman spectroscopy; partial least square; paclitaxel

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Panchagnula R. Pharmaceutical aspects of paclitaxel. Int J Pharm, 1998, 172(1/2): 1-15
2. He L, Jagtap P G, Kingston D G, et al. A common pharmacophore for Taxol and the epothilones based on the biological activity of a taxane molecule lacking a C-13 side chain. Biochemistry, 2000, 39(14): 3972-3978
3. Guenard D, Gueritte-Voegelein F, Potier P. Taxol and taxotere: discovery, chemistry, and structure-activity relationships. Acc Chem Res, 1993, 26(4): 160-167
4. Gangadevi V, Muthumary J. Preliminary studies on cytotoxic effect of fungal taxol on cancer cell lines. African Journal of Biotechnology, 2007, 6(12): 1382-1386
5. De Beer T, Burggraeve A, Fonteyne M, et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm, 2011, 417(1/2): 32-47
6. Zhang Bin, Maiti A, Shively S, et al. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci U S A, 2005, 102(1): 227-231
7. Hu Yaxi, Feng Shaolong, Gao Fang, et al. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. Food Chem, 2015, 176(49): 123-129
8. Scheier R, Scheeder M, Schmidt H. Prediction of pork quality at the slaughter line using a portable Raman device. Meat Sci, 2015, 103: 96-103
9. Berhe D T, Lawaetz A J, Engelsen S B, et al. Accurate determination of endpoint temperature of cooked meat after storage by Raman spectroscopy and chemometrics. Food Control, 2015, 52: 119-125
10. Tenenhaus M, Vinzi V E, Chatelin Y M, et al. PLS path modeling. Comput Stat Data Anal, 2005, 48(1): 159-205
11. Mariani N C T, de Almeida Teixeira G H, de Lima K M G, et al. NIRS and iSPA-PLS for predicting total anthocyanin content in jaboticaba fruit. Food Chemistry, 2015, 174: 643-648
12. 杨涛, 崔福德, 金大德. RP-HPLC 法测定紫杉醇在大鼠血浆中的含量. 沈阳药科大学学报, 2008, 25(1): 48-51, 55
13. Li Jiangbo, Huang Wenqian, Chen Liping, et al. Variable selection in visible and near-infrared spectral analysis for noninvasive determination of soluble solids content of ‘Ya’ pear. Food Anal Methods, 2014, 7(9): 1891-1902
14. Song Jia, Xie Jing, Li Chenliang, et al. Near infrared spectroscopic (NIRS) analysis of drug-loading rate and particle size of risperidone microspheres by improved chemometric model. Int J Pharm, 2014, 472(1/2): 296-303
15. Haughey S A, Galvin-King P, Ho Y C, et al. The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye. Food Control, 2015, 48(SI): 75-83