生物医学工程学杂志

生物医学工程学杂志

磁探测电阻抗成像呼吸监测仿真研究

查看全文

为了探索磁探测电阻抗成像应用于肺部呼吸监测中的可行性,针对新型磁探测电阻抗成像技术的正问题,以真实人体肺部数据构建成像体物理模型,采用了有限元方法得到成像体内部的电势和电流密度分布,然后根据毕奥-萨伐尔定律分别获得呼气末与吸气末成像体外部的磁感应强度仿真数据。结果表明,吸气末时成像体周围的磁感应强度值比呼气末小 8.875%。研究结果显示了呼吸时由于肺容积、电导率的不同而导致周围磁感应强度的差异等信息,为后续磁探测电阻抗成像的图像重建以及临床疾病检测奠定了基础。

In order to explore the feasibility of applying magnetic detection electrical impedance tomography (MDEIT) on respiratory monitoring, aiming at the forward problem of magnetic detection electrical impedance tomography, we calculated the electric potential and current density distribution inside the imaging object by using the finite element method. We then got magnetic induction intensity outside the object at the end of exhaling and inhaling according to Biot-Savart's law. The results showed that the magnetic induction intensity at the end of inhaling was 8.875%, less than that at the end of exhaling. By the simulation results, we could understand the difference of magnetic induction intensity value surrounding the lung at the end of exhaling and inhaling due to the change of lung volume and electrical conductivity distribution better. Our research laid the foundation for the late image reconstruction and clinical disease detection.

关键词: 磁探测电阻抗成像; 正问题; 有限元方法; 磁感应强度

Key words: magnetic detection electrical impedance tomography; forward problem; finite element method; magnetic induction intensity

引用本文: 王慧泉, 尹剑利, 李光旭, 冯彦博, 王金海, 陈瑞娟. 磁探测电阻抗成像呼吸监测仿真研究. 生物医学工程学杂志, 2017, 34(1): 27-33. doi: 10.7507/1001-5515.201604083 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 陈云芝, 徐桂芝, 周茜, 等. 基于脉冲时间依赖可塑性的自适应神经网络抗扰能力研究. 生物医学工程学杂志, 2015, 32(1)): 25-31.
2. 朱险峰, 苏益锦, 余辉. 物理人建模及应用的研究现状与展望. 生物医学工程学杂志, 2014, 31(6): 1384-1388.
3. 周永军, 张辉, 牛中奇. 高频低能电磁环境头颅内电场应力分析. 生物医学工程学杂志, 2015, 32(2): 295-299.
4. Henderson R P, Webster T G. An impedance camera for spatially specific measurements of the thorax. IEEE Trans Biomed Eng, 1978, 25: 250-254.
5. Suchomel J, Sobota V. A model of end-expiratory lung impedance-pendency on total extracellular body water//XIV Conference on Electrical Impendance Tomography, 2013: 1-4.
6. Ferrario D, Grychtol B, Adler A, et al. Toward morphological thoracic EIT: major signal sources correspond to respective organ locations in CT. IEEE Trans Biomed Eng, 2012, 59(11): 3000-3008.
7. Zhao Z, Fischer R, Frerichs I, et al. Regional ventilation in cystic fibrosis measure by electrical impedance tomography. J.Cyst.Fibro, 2012, 11(5): 412-418.
8. Pavl D, Anatolij T, Josef P, et al. Assessment of regional ventilation with the electrical impedance tomography in a patient after asphyxia cardiac arrest. Resuscitation, 2014, 85(8): 115-117.
9. Karsten J, Bohlmann M, Sedemund-Adib B, et al. Electrical impedance tomography May optimize ventilation in a postpartum Woman with respiratory failure. Int J Obstet Anesth, 2013, 22(1): 67-71.
10. Brunner P, Mayer M, Hinghofer-Szalkay H A, et al. Imaging of local lung ventilation under different gravitational conditions with electrical impedance tomography. Acta Astronaut, 2007, 60(4/7): 281-284.
11. 陈瑞娟. 三维开放式磁共振电阻抗成像的研究. 天津: 天津大学, 2012.
12. 李蔚琛, 史学涛, 夏军营, 等. 用于生物电阻抗成像系统的镜像反馈电流源的研究. 医疗卫生装备, 2015, 36(2): 1-5.
13. 谭春晓. 基于信赖域方法的电阻抗断层成像研究. 天津: 河北工业大学, 2013.
14. Ahlfors S, IIMONIEMIR. Magnetic imaging of conductivity//14th Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, France: 1992: 1717-1718.
15. Tozer J C, Ireland R H, Barber D C, et al. Magnetic impedance tomography. Ann N Y Acad Sci, 1999, 873(1): 353-359.
16. Ireland R H, Tozer J C, Barker A T, et al. Towards magnetic detection electrical impedance tomography: data acquisition and image Reconstruction of current density in phantoms and in vivo. Physiol Meas, 2004, 25(3): 775-796.
17. Barber D, Brown B. Applied potential tomography. J Br Interplanet Soc, 1989, 42(7): 391-393.
18. Dehghanih. Barber D C, Basarrab H I. Incorparating a prioriannatomical information into image Reconstruction in electrical impedance tomography. Physiol Meas, 1999, 20: 87-102.
19. National Cancer Institute. 肺癌图像数据库联盟, (2016-04-23)[2016-04-28].
20. Faes T, van der Meij H, de Munck J, et al. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol Meas, 1999, 20(4): R1-10.