生物医学工程学杂志

生物医学工程学杂志

睡眠呼吸暂停综合征脑电关联维特性研究

查看全文

睡眠呼吸暂停综合征(SAS)是一种常见且危害巨大的全身性睡眠疾病。SAS 患者存在明显的脑部结构和功能的影像学改变,而脑电图(EEG)能反映大脑组织的电活动及功能状态,是描述睡眠过程最直观的参数。基于 EEG 信号的非平稳和非线性特性,本文采用非线性方法对 SAS 患者睡眠 EEG 信号的关联维特性进行分析。将 6 名 SAS 患者组成 SAS 组,6 名健康人组成对照组。研究结果显示,SAS 患者和健康人睡眠 EEG 信号的关联维变化规律一致,即随着睡眠加深,其关联维均逐渐减小,但到快速眼动期(REM)时,关联维又上升至觉醒和浅睡眠期的水平;与此同时,SAS 组的关联维在各个睡眠阶段均低于对照组,两组间存在的差异具有统计学意义(P<0.01)。研究结果表明,SAS 患者的 EEG 信号与健康人之间存在明显的非线性动力学差异,这为研究 SAS 的生理机制及实现 SAS 的自动检测提供了新的方向。

Sleep apnea syndrome (SAS) is a kind of common and harmful systemic sleep disorder. SAS patients have significant iconography changes in brain structure and function, and electroencephalogram (EEG) is the most intuitive parameter to describe the sleep process which can reflect the electrical activity and function of brain tissues. Based on the non-stationary and nonlinear characteristics of EEG, this paper analyzes the correlation dimension of sleep EEG in patients with SAS. Six SAS patients were classed as SAS group and six healthy persons were classified into a control group. The results showed that the correlation dimension of sleep EEG in the SAS group and the control group decreased gradually with the deepening of sleep, and then increased to the level of awake and light sleep stage with rapid eye movement (REM). The correlation dimension of SAS group was significantly lower than that of control group (P<0.01) throughout all the stages. The results suggested that there were significant nonlinear dynamic differences between the EEG signals of SAS patients and of healthy people, which provided a new direction for the study of the physiological mechanism and automatic detection of SAS.

关键词: 睡眠呼吸暂停综合征; 脑电图; 非线性; 关联维

Key words: sleep apnea syndrome; electroencephalogram; nonlinearity; correlation dimension

引用本文: 周静, 吴效明. 睡眠呼吸暂停综合征脑电关联维特性研究. 生物医学工程学杂志, 2017, 34(2): 168-172. doi: 10.7507/1001-5515.201604045 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Guilleminault C, Tilkian A, Dement W C. The sleep apnea syndrome. Annu Rev Med, 1976, 27: 465-484.
2. 王永杰. 打鼾不治会得大病. 大众卫生报. 2005.5.10.
3. Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med, 1997, 157(15): 1746-1752.
4. Dimsdale J E, Loredo J S, Profant J. Effect of continuous airway pressure on blood pressure. Hypertension, 2000, 35: 144-147.
5. 于兰, 贾占玲. 睡眠与睡眠障碍, 长春, 吉林人民出版社: 2006.
6. Zimmerman M E, Aloia M S. A review of neuroimaging in obstructive sleep apnea. J Clin Sleep Med, 2006, 2(4): 461-471.
7. Ayalon L, Peterson S. Functional central nervous system imaging in the investigation of obstructive sleep apnea. Curr Opin Pulm Med, 2007, 13(6): 479-483.
8. Nowak M, Kornhuber J, Meyrer R. Daytime impairment and neurodegeneration in OSAS. Sleep, 2006, 29(12): 1521-1530.
9. Malinowska U, Durka P J, Blinowska K J, et al. Micro- and macrostructure of sleep EEG. IEEE Eng Med Biol Mag, 2006, 25(4): 26-31.
10. Peiris M T R, Jones R D, Davidson P R. Detecting behavioral microsleeps from EEG power spectra// In Proceedings of the 28th IEEE international conference on engineering in medicine and biology society, 2006: 5723-5726.
11. Sugi T, Nakamura M, Shimokawa T, et al. Automatic detection of EEG arousals by use of normalized parameters for different subjects//In Proceedings of the IEEE Asian-Pacific conference on engineering in medicine and biology society, 2003: 146-147.
12. Ventouras E M, Ktonas P Y, Tsekou H, et al. Slow and fast EEG sleep spindle component extraction using Independent component analysis//In Proceedings of the 8th IEEE international conference on bioinformatics and biomedical engineering, 2008: 1-6.
13. Zhang D X, Wu X P, Guo X J. The EEG signal preprocessing based on empirical mode decomposition//In Proceedings of the 2nd IEEE international conference on bioinformatics and biomedical engineering, 2008: 2131-2134.
14. Kantz H, Sehreiber T. Nonlinear time series analysis. Cambridge: cambridge university press, 1996.
15. Pritchard W S, Duke D W, Krieble K K. Dimensional analysis of resting human EEG. II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos. Psychophysiology, 1995, 32(5): 486-491.
16. Babloyantz A, Salazar J M, Nicolis C. Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett A, 1985, 111(3): 152-156.
17. Babloyantz A, Destexhe A. Low-dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci U S A, 1986, 83(10): 3513-3517.
18. Pijin J P, Neerven J V, Noest A, et al. Chaos or noise in EEG signals. dependence on state and brain site. Electroencephalogr Clin Neurophysiol, 1991, 79: 371-381.
19. Stam C J, Jelles B, Achtereekte H A, et al. Investigation of EEG non-linearity in dementia and Parkinson's disease. Electroencephalogr Clin Neurophysiol, 1995, 95(5): 309-317.
20. Stam C J, Jelles B, Achtereekte H A, et al. Diagnostic usefulness of linear and nonlinear quantitative EEG analysis in Alzheimer's disease. Clin Electroencephalogr, 1996, 27(2): 69-77.
21. Takens F. Detecting strange attractors in turbulence. Lecture Notes in Mathematics, 1981, 898(1): 366-381.
22. 李红利.癫痫脑电信号的非线性分析. 天津: 天津大学, 2012.
23. CAO Liangyue. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43-50.
24. Grassberger J, Procacria I. Measuring the strangeness of strange attractor. Physica D, 1983, 9: 189-208.
25. Janjarasjitt S, Scher M S, Loparo K A. Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between sleep state and complexity. Clin Neurophysiol, 2008, 119(8): 1812-1823.
26. 丁黎明.睡眠脑电的混沌学研究. 镇江: 江苏大学, 2007.
27. Coito A S, Sanches J. Assessment of obstructive sleep apnea syndrome by spectral analysis of physiological parameters//1st Portuguese Meeting in Bioengineering, 2011: 2.
28. Coito A S, Belo D, Paiya T, et al. Topographic EEG brain mapping before, during and after Obstructive Sleep Apnea Episodes// 2011 IEEE International Symposium on/ Biomedical Imaging: From Nano to Macro, 2011: 1860-1863.
29. Akṣahin M, Aydın S, Fırat H, et al. Artificial apnea classification with quantitative sleep EEG synchronization. J Med Syst, 2012, 36(1): 139-144.
30. Almuhammadi W S, Aboalayon K A, Faezipour M. Efficient obstructive sleep apnea classification based on EEG signals//2015 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT), 2015: 1-6.
31. 江朝晖, 冯焕清, 刘大路, 等. 改进 G-P 算法与睡眠脑电的关联维. 北京生物医学工程, 2004, 23(4): 260-262.