生物医学工程学杂志

生物医学工程学杂志

血糖监测用植入式传感器的研究进展

查看全文

连续血糖监测对于重症糖尿病患者至关重要,但目前仍然没有可供临床使用的长效植入式葡萄糖传感器面世。本文介绍了连续血糖监测用传感器分类,重点探讨了传感器植入后的失效机制,指出了提高传感器植入寿命的途径及注意事项,并展望了植入式葡萄糖传感器的未来研究方向。

Continuous glucose monitoring plays an important role in severe diabetic patients. However, there is no available commercial implanted glucose biosensor for long-term clinic application. This paper firstly introduces the classification of biosensors for continuous glucose monitoring, and then discusses the failure mechanism for implanted biosensors. After that, it points out the routes and tips to improve the life time of the biosensor, and finally looks forward to the future development of implanted glucose biosensors.

关键词: 连续血糖监测; 葡萄糖传感器; 植入器件; 异物反应

Key words: continuous glucose monitoring; glucose biosensor; implanted devices; foreign body reaction

引用本文: 余江渊, 李崭虹, 陈诚, 陈云霞, 朱志刚. 血糖监测用植入式传感器的研究进展. 生物医学工程学杂志, 2016, 33(5): 991-997. doi: 10.7507/1001-5515.20160159 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. EI-LABOUDI A, MISRA S, MRTINEAU M, et al. Intentional large insulin overdose captured on a continuous glucose monitor:a novel case report[J]. J Diabetes Sci Technol, 2015, 9(4):929-931.
2. BATTELINO T, OMLADI AČU J Š, PHILLIP M. Closed loop insulin delivery in diabetes[J]. Best Pract Res Clin Endocrinol Metab, 2015, 29(3):315-325.
3. KREYSA G, OTA K, SAVINELL RF. Encyclopedia of Applied Electrochemistry[M]. New York:Springer New York Press, 2012:479-485.
4. SIDES C R, STENKEN J A. Microdialysis sampling techniques applied to studies of the foreign body reaction[J]. Eur J Pharm Sci, 2014, 57(SI):74-86.
5. VEZOUVIOU E, LOWE C R. A near infrared holographic glucose sensor[J]. Biosens Bioelectron, 2015, 68:371-381.
6. CHEN Chao, XIE Qingji, YANG Dawei, et al. Recent advances in electrochemical glucose biosensors:a review[J]. RSC Adv, 2013, 3(14):4473-4491.
7. ZHU Zhigang, GARCIA-GANCEDO L, FLEWITT A J, et al. A critical review of glucose biosensors based on carbon nanomaterials:carbon nanotubes and graphene[J]. Sensors (Basel), 2012, 12(5):5996-6022.
8. NICHOLS S P, KOH A, STORM W L, et al. Biocompatible materials for continuous glucose monitoring devices[J]. Chem Rev, 2013, 113(4):2528-2549.
9. ANDERSON J M, RODRIGUEZ A, CHANG D T. Foreign body reaction to biomaterials[J]. Semin Immunol, 2008, 20(2):86-100.
10. GIFFORD R, KEHOE J J, BARNES S L, et al. Protein interactions with subcutaneously implanted biosensors[J]. Biomaterials, 2006, 27(12):2587-2598.
11. KLUEH U, QIAO Yi, FRAILEY J T, et al. Impact of macrophage deficiency and depletion on continuous glucose monitoring in vivo[J]. Biomaterials, 2014, 35(6):1789-1796.
12. KLUEH U, FRAILEY J T, QIAO Yi, et al. Cell based metabolic barriers to glucose diffusion:Macrophages and continuous glucose monitoring[J]. Biomaterials, 2014, 35(10):3145-3153.
13. KOH A, LU Yuan, SCHOENFISCH M H. Fabrication of nitric oxide-releasing porous polyurethane membranes-coated needle-type implantable glucose biosensors[J]. Anal Chem, 2013, 85(21):10488-10494.
14. 余江渊, 朱志刚, 陈诚, 等.基于螺旋型铂铱合金电极的植入式葡萄糖生物传感器[J].传感技术学报, 2016, 29(1):9-14.
15. ZHU Zhigang, GARCIA-GANCEDO L, FLEWITT A J, et al. Design of carbon nanotube fiber microelectrode for glucose biosensing[J]. J Chem Technol Biotechnol, 2012, 87(2):256-262.
16. Zhu Zhigang, GARCIA-GANCEDO L, CHEN C, et al. Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate[J]. Sens Actuators B Chem, 2013, 178:586-592.
17. 蔡丽俊, 朱志刚, 余江渊, 等.面向医疗物联网的便携式连续血糖监测系统研究[J].传感技术学报, ……(刊印中).
18. WANG Yan, VADDIRAJU S, GU Bing, et al. Foreign body reaction to implantable biosensors:effects of tissue trauma and implant size[J]. J Diabetes Sci Technol, 2015, 9(5):966-977.
19. NOVAK M T, REICHERT W M. Modeling the physiological factors affecting glucose sensor function in vivo[J]. J Diabetes Sci Technol, 2015, 9(5):993-998.
20. MOUSSY F, HARRISON D J, RAJOTTE R V. A miniaturized Nafion-based glucose sensor:in vitro and in vivo evaluation in dogs[J]. Int J Artif Organs, 1994, 17(2):88-94.
21. CHEN Dajing, WANG Cang, CHEN Wei, et al. PVDF-Nafion nanomembranes coated microneedles for in vivo transcutaneous implantable glucose sensing[J]. Biosens Bioelectron, 2015, 74:1047-1052.
22. WANG Ning, BURUGAPALLI K, SONG Wenhui, et al. Electrospun fibro-porous polyurethane coatings for implantable glucose biosensors[J]. Biomaterials, 2013, 34(4):888-901.
23. WANG Ning, BURUGAPALLI K, SONG Wenhui, et al. Tailored fibro-porous structure of electrospun polyurethane membranes, their size-dependent properties and trans-membrane glucose diffusion[J]. J Memb Sci, 2013, 427(15):207-217.
24. YU B Z, WANG C Y, JU Y M, et al. Use of hydrogel coating to improve the performance of implanted glucose sensors[J]. Biosens Bioelectron, 2008, 23(8):1278-1284.
25. LIN G, CHANG S, HAO H, et al. Osmotic swelling pressure response of smart hydrogels suitable for chronically implantable glucose sensors[J]. Sens Actuators B Chem, 2010, 144(1):332-336.
26. WANG Yan, PAPADIMITRAKOPOULOS F, BURGESS D J. Polymeric "smart" coatings to prevent foreign body response to implantable biosensors[J]. J Control Release, 2013, 169(3):341-347.
27. WANG Yan, VADDIRAJU S, QIANG Liangliang, et al. Effect of dexamethasone-loaded poly(lactic-co-glycolic acid) microsphere/poly(vinyl alcohol) hydrogel composite coatings on the basic characteristics of implantable glucose sensors[J]. J Diabetes Sci Technol, 2012, 6(6):1445-1453.
28. VADDIRAJU S, LEGASSEY A, QIANG Liangliang, et al. Enhancing the sensitivity of needle-implantable electrochemical glucose sensors via surface rebuilding[J]. J Diabetes Sci Technol, 2013, 7(2):441-451.
29. VALLEJO-HELIGON S G, KLITZMAN B, REICHERT W M. Characterization of porous, dexamethasone-releasing polyurethane coatings for glucose sensors[J]. Acta Biomater, 2014, 10(11):4629-4638.
30. KASTELLORIZIOS M, PAPADIMITRAKOPOULOS F, BURGESS D J. Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants[J]. Journal of Controlled Release, 2015, 214):103-111.
31. JIA Wenzhi, WANG Kang, XIA Xinghua. Elimination of electrochemical interferences in glucose biosensors[J]. TrAC Trends in Analytical Chemistry, 2010, 29(4):306-318.
32. ZHANG Y, WILSON G S. In vitro and in vivo evaluation of Oxygen effects on a glucose oxidase based implantable glucose sensor[J]. Anal Chim Acta, 1993, 281(3):513-520.
33. GOUGH D A, LUCISANO J Y, TSE P H. Two-dimensional enzyme electrode sensor for glucose[J]. Anal Chem, 1985, 57(12):2351-2357.
34. SOTO R J, PRIVETT B J, SCHOENFISCH M H. In vivo analytical performance of nitric oxide-releasing glucose biosensors[J]. Anal Chem, 2014, 86(14):7141-7149.
35. LIN P, LIN C W, MANSOUR R, et al. Improving biocompatibility by surface modification techniques on implantable bioelectronics[J]. Biosens Bioelectron, 2013, 47:451-460.
36. HARRIS J M, REYES C, LOPEZ G P. Common causes of glucose oxidase instability in in vivo biosensing:a brief review[J]. J Diabetes Sci Technol, 2013, 7(4):1030-1038.
37. Qin YH, Howlader M, Deen MJ, et al. Polymer integration for packaging of implantable sensors. Sens Actuators B Chem, 2014, 202:758-778.