生物医学工程学杂志

生物医学工程学杂志

年龄相关的动态功能连接网络特征研究

查看全文

大脑老化会影响脑区之间的功能连接(FC),近几年有研究表明脑区之间的功能连接是随着时间变化的,而这种动态的变化能反映更多的生理病理信息。因此,本研究基于静息态功能磁共振成像(fMRI),采用滑动窗技术构建了 32 名老年受试者和 36 名年轻受试者的动态功能连接网络。利用小波包分析研究了波动能量差异对频段的依赖性,并与年龄进行线性回归分析。本文研究结果发现,老年组的功能连接波动能量在低频段高于青年组,而在高频段低于青年组。结果表明,老年人网络间的动态功能连接存在慢波化现象,这可能与老年人大脑的功能衰退有关。通过本文研究结果,可为脑老化的研究提供一种新的思路,同时也可促进对动态功能连接的理解。

Brain aging can affect the strength of functional connectivity between brain regions. In recent years, studies have shown that functional connectivity is fluctuant over time, and can reflect more physiological and pathological information. Therefore, in the study resting state functional magnetic resonance imaging (fMRI) data of 32 elderly subjects and 36 younger subjects were selected, and the sliding window technique was used to estimate dynamic functional connectivity network. Then, the dependency of fluctuating energy difference on frequency band was studied using wavelet packet analysis, conducting the linear regression with age at the same time. Results showed that the fluctuating energy in older group was significantly higher than that in the young group in low frequency, and it was significantly lower than that in the young people in high frequency. These results suggested that the dynamic functional connectivity between networks in the elderly exist slow wave phenomenon, which may be related to the decreased reaction rate of the elderly. This article provides new ideas and methods for the research about brain aging, and promotes a theoretical basis for further understanding of the physiological significance of brain dynamic functional connectivity.

关键词: 脑老化; 功能磁共振成像; 动态功能连接; 小波包分析; 归一化能量

Key words: brain aging; functional magnetic resonance imaging; dynamic functional connectivity; wavelet packet analysis; normalized energy

引用本文: 赵欣, 张雄, 王伟伟, 刘亚男, 沙淼, 陈元园, 倪红艳, 明东. 年龄相关的动态功能连接网络特征研究. 生物医学工程学杂志, 2017, 34(2): 161-167. doi: 10.7507/1001-5515.201511032 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 李会杰, 左西年. 认知与脑老化. 中国现代神经疾病杂志, 2014, 14(3): 170-175.
2. Ferreira L K, Busatto G F. Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev, 2013, 37(3): 384-400.
3. Wu Jingtao, Wu Huizhen, Yan Chaogan, et al. Aging-related changes in the default mode network and its anti-correlated networks: A resting-state fMRI study. Neurosci Lett, 2011, 504(1): 62-67.
4. Onoda K, Ishihara M, Yamaguchi S. Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci, 2012, 24(11): 2186-2198.
5. Biswal B B, Mennes M, Zuo Xinian, et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A, 2010, 107(10): 4734-4739.
6. Chang Catie, Glover G H. Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 2010, 50(1): 81-98.
7. Allen E A, Damaraju E, Plis S M, et al. Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 2014, 24(3): 663-676.
8. 艾凯. 老化大脑的动态情绪记忆网络研究. 长沙: 中南大学, 2014.
9. Zuo Xinian, Xu Ting, Jiang Lili, et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. Neuroimage, 2013, 65: 374-386.
10. Dosenbach N U, Nardos B, Cohen A L, et al. Prediction of individual brain maturity using fMRI. Science, 2010, 329(5997): 1358-1361.
11. Stevens W D, Hasher L, Chiew K S, et al. A neural mechanism underlying memory failure in older adults. Journal of Neuroscience, 2008, 28(48): 12820-12824.
12. Rypma B, Eldreth D A, Rebbechi D. Age-related differences in activation-performance relations in delayed-response tasks: A multiple component analysis. Cortex, 2007, 43(1): 65-76.
13. Dubbelink K O, Stoffers D, Deijen J B, et al. Cognitive decline in Parkinson's disease is associated with slowing of resting-state brain activity:a longitudinal study. Neurobiol Aging, 2013, 34(2): 408-418.
14. Lin X, Jia X, Zang Y F, et al. Frequency-dependent changes in the amplitude of low-frequency fluctuations in Internet gaming disorder. Front Psychol, 2015, 6: 1471.
15. 张奕文. 轻度认知功能障碍的定量脑电图功率谱特征. 福州: 福建医科大学, 2010.
16. Madden D J, Bennett I J, Burzynska A, et al. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2012, 1822(3): 386-400.